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NOTE

- Meaning of terms are different for each community.

- There are a lot of good documents. Please see also references.
- This is written for GHC's Haskell.
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Basic mental models



1. Introduction

How to evaluate a program in your brain ?

a program
code
code o
code
7

How to evaluate (execute, reduce) the program in your brain?

What "mental model” do you have?



1. Introduction

One of the mental models for C program

C program
A sequence of statements A nested structure

main (...) { x = funcl( func2(a));
code.. ] ?
code.. [ 7
code.. A sequence of arguments
code.. | ] J

} p y = funcl( a(x), b(x), c(x)):

?

A function and arguments

z=funcl(m+n);
?

How to evaluate (execute, reduce) the program in your brain?
What step, what order, ... ?



1. Introduction

C program

One of the mental models for C program

A program is a collection of statements.

A sequence ozf statements

}

maiy/(...

code..
code..
code..
code..

){

A\ 4

\ %

- Statements are

executed downward.

A nested structure

x = funcl( func2(a));

-
<

A\
N from inner to outer

A sequence of arguments

y = funcl( a(x), b(x), c(x)):;

»

N »

N
from left to right

A function and arguments

z = funcl(m+n);

-
<

\__ arguments first
apply second

Each programmer has some mental models in their brain.



1. Introduction

One of the mental models for C program

Maybe, You have some implicit mental model in your brain for C program.
(1) A program is a collection of statements.
(2) There is the order between evaluations of elements.

(3) There is the order between termination and start of evaluations.

termination

start > start | terminafion
R/

This is a syntactically straightforward model for programming languages.
(an implicit sequential order model)



1. Introduction

One of the mental models for Haskell program

Haskell program

main = expy, (eXpy, eXPgc €XPqd )

€XPac = €XPaca €XPacb

expad - expada expadb expadc

How to evaluate (execute, reduce) the program in your brain?
What step, what order, ... ?



1. Introduction

One of the mental models for Haskell program

AEG pr‘ogr'am/_ A program is a collection of expressions.
P

main = exp,, (eXpy, eXPyc €XPyq )
€XPac = €XPaca acb
€XPad = €XPgda €XPadb €XPadc 3 @
| 7
—
main = ﬁj(expab (eXPaca €XPach ) (€XPada €XPadb €XPadc) )

\_ A entire program is regarded as a single expression.

\ The subexpression is evaluated (reduced) in some order.

\ The evaluation is performed by replacement.



1. Introduction

One of the mental models for Haskell program

(1) A program is a collection of expressions.

(2) A entire program is regarded as a single expression.

(3) The subexpressions are evaluated (reduced) in some order.

f:e(e(e(ee)e(eee)‘)) |>/<<%>>?

o

(4) The evaluation is performed by replacement.

This is an example of an expression reduction model for Haskell.
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1. Introduction

Why lazy evaluation?

To manipulate infinite data sTr'ucTur'es]
To avoid unnecessary computation ).

To manipulate streames J
modularity ] -

/

- pure is order free J
abstraction

To manipulate huge data structures ]

amortizing ]

potentially parallelism

2nd Church-Rosser theorem ]
/

A“'——-—_

A

out-of-order optimization . : :
f P To implement non-strict semantics ]

V4

A“————_

\
asynchronization ] Vr fun
J

vea(ﬂ.ive

There are various reasons ©
References : [H4], [H3], [B2], [B7], [B8], [D2], [D12], [D13], [D14]



1. Introduction

Haskell(GHC) 's lazy evaluation

Lazy evaluation

evaluate only when needed

evaluate only enough

evaluate at most once

eval

need

"Lazy" is "delay and avoidance” rather than “delay”.

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]



1. Introduction

Ingredient of Haskell(GHC) 's lazy evaluation

only when needed |

|

normal order reduction

an expression

evaluate

\
+
only enough J stop at WHNF
\
+

at most once

N

substitute pointers
update redex root with result

a value

This strategy is implemented by lazy graph reduction.

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]



1. Introduction

Techniques of Haskell(GHC) 's lazy evaluation
evaluate
only when needed

normal order reduction
(leftmost outermost reduction)

patitern-matching call-by-need

lazy graph reductio
substitute pointers

stop at WHNF update redex rogt with result

self-updating mode

lazy constructor

full laziness
evaluate

at most once

evaluate
only enough

References : [B2] Ch.7, [H4] Ch.2, 11, 12, 15, [H5], [D2]
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What order?

an expression

0 1
.
>

An expression is evaluated by normal order (leftmost outermost redex first).

Normal order reduction guarantees to find a normal form (if one exists).

To avoid unnecessary computation, normal order reduction chooses to apply the function
rather than first evaluating the argument.

References : [H4] Ch.2, 11, [B6] Ch.5



1. Introduction

Haskell code

How to postpone?

heap memory

expoy (exp; exp, exps

y —

/\
build/allocate

an unevaluated expression

peErS
exp; exp, CXPB

thunk

To postpone the evaluation, an unevaluated expression is built in the heap memory.

References : [H4], [H5]



1. Introduction

pattern-matching

When needed?

case x of

Just _ | ->True
Nothing | -> False

built-in (primitive operation)

X +Yy

forcing request

seq Xy

f $! arg

_\

heap memory

an unevaluated expression

\
evaluation request exp; exp; exps

| _—

//'

Pattern-matching or forcing request drive the evaluation.

References : [H4], [D2], [D5]
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What to be careful about?

To consider hidden space leak

— L.

]
o | N

To consider performance cost to postpone unevaluated expressions

1.

/_>©
build, force, = > D heap
update,gc, ... memory

To consider evaluation (execution) order and timing in real world

—Q

—
——
——

O © >
O © >

You can avoid the pitfalls by controlling the evaluation.

References : [H4], [D2], [D5]
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Expression and value



2. Expressions

What is an expression?

An expression

References : [B1] Ch.1, [B2] Ch.2, [B6] Ch.3, [H4] Ch.2



2. Expressions

An expression denotes a value

An expression

1+2

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2



2. Expressions

An expression is evaluated to a value

An expression

evaluate

>

A value

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2



2. Expressions

There are many evaluation approaches

An expression

(1+2)"2
evaluation|strategies
x - Strict, Non-strict evaluation

- Eager, Lazy evaluation
- Call-by-value, Call-by-name,

v Call-by-need, ...
- Innermost, Outermost

9 - Normal order, Applicative order

A value

References : [B2] Ch.2, 7, [B6] Ch.3, [D1]



2. Expressions

There are some evaluation levels

An expression

Con

- ——"?:"--_ -----------
WHNF !
A | ———— | i ~
(Weak Head Normal Form) (] -7~ T ™~
I' - ;L <I:, ~ \
7’
NF A value

(Normal Form)

References : [D3], [B2] Ch.2, 7, [B6] Ch.3, [D1]
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2. Expressions

There are many expressions in

Expressions

Haskell

Clraess > 23

do {x <- get; put x}

if bthenlelse O

+ XS

= D

l categorizing

References : [B2] Ch.2, [H1] Ch.3




2. Expressions

Expression categories in Haskell

lambda abstraction let expression
N\ 4
@ let x=1linx+y
J \_
conditional case expression do expression

if b then 1 else 0 @

do {x <- get; put x}

function application

f

7

-
@ (\ x->x+1)3 1+2
J
general constructor, literal and some forms variable
) 4

-

J L

J

References : [H1] Ch.3, [B2] Ch.2



2. Expressions

Specification is described in Haskell 2010 Language Report

"Haskell 2010 Language Report, Chapter 3 Expressions” [H1]

ETP

nfirerp

l erp

fexp

0EeTp

_:..

infizexp : : [context =>] type
infirerp

lexp qop infizexp
— infizexp
lexp

\ apat; ... apat, —> exp

let decls in exp

if exp [;| then exp [; | else exp
case exp of { alts }

do { stmis }

fexp

(fexp| aexp

guar
qeoTn

literal

(exp)

(exps , ..., exp )

[E-TFI Fovee "3-'1"-}‘?&]

[ exps [, exps] .. [exps] ]

[ exp | qualy , ..., qual, ]
( infizezp qop )

( gop—y infirexp )

geon { fhind; , ..., fhind, }
QETP{gcomn) | fbind; , ..., fbind, }

(expression type signature)

(infix operator application)
(prefix negation)

(lambda abstraction, n > 1)
(let expression)
(conditional )

(case expression)

(do expression)

(function application)

(variable)
(genera] constructor}

(parenthesized expression)
(tuple, k£ = 2)

(list, k > 1)

(arithmetic sequence )

(list comprehension, n > 1)
(left section)

(right section)

(labeled construction, n > ()
(labeled update, n > 1)

References : [H1] Ch.3, [B2] Ch.2
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2. Expressions

Classification by values

Expressions

unevaluated expressions

L then e D :®:C>

values

data values function values

D

oo
Cl23> oo
15D G idd

D

Values are data values or function values.

References : [H5]



2. Expressions

Classification by forms

Expressions

unevaluated expressions

L then e D :®:C>

values
WHNF

HNEF Cxoabs D
Cust (D ClxoylD Coo x+ (absID

o> >
T > —=

D

Values are WHNF, HNF or NF.

References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]
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2. Expressions

WHNF is one of the form in the evaluated values

An expression

exp

(1) normal order reduction
of top- level (head) redexes

WHNF

(Weak Head Normal Form) ™\

no top-level redexes

" (2) hormal order reduction
of inner level redexes

NF A value

(Normal Form)
no redexes at all

References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]



2. Expressions

WHNF

top-level (head) is
a constructor or
a lambda abstraction

no top-level redex

WHNF is a value which has evaluated top-level

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

WHNF for a data value and a function value

a data value in WHNF

/7 inner redexes

constructor p A S

no top-level redex

a function value in WHNF

lambda abstraction
\ inner redexes

no top-level redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

Examples of WHNF

Just 7
no top-level redex
WHNF
Just (abs x)
no top-level redex
Cons (f 1) (map f [2..])
no top-level redex
\ X -> x+1
no top-level redex
abs 7
no WHNF top level-redex
if X then ' True = else ' False

top level-redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

HNF

top-level (head) is
a constructor or
a lambda abstraction wi

no top-level redex

no top-level redex

HNF is a value which has evaluated top-level

* GHC uses WHNF rather than HNF.

References : [H4] Ch.11, [D3], [B3]



2. Expressions

HNF for a data value and a function value

a data value in HNF (same as WHNF)

/7 inner redexes

constructor p A \

no top-level redex

a function value in HNF

lambda abstraction *\j

no redex

References : [H4] Ch.11, [D3], [B3]



2. Expressions

Examples of HNF

Just 7
no top-level redex
HNF
Just (abs x)
no top-level redex
\ X -> Just (abs 7)
no top-level redex
abs 7
no HNF top level-redex
\ X -> abs 7

top level-redex

References : [H4] Ch.11, [D3], [B3]



2. Expressions

NF

top-level (head) is
a constructor or
a lambda abstraction

\ J
L4

no internal redex

NF is a value which has no redex.

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

NF for a data value and a function value

a data value in NF

constructor

Y

no internal redex

a function value in NF

lambda abstraction *\j

\ J
Y

no internal redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

Examples of NF

Just 7

Y
no internal redex

NF

Cons 1 Nil

Y
no internal redex

\ X -> x+1

Y
no internal redex

Just (abs 7)

redex

no NF

\ X -> Just (abs 7)

redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

WHNF, HNF, NF

top-level (head) is
a constructor or
a lambda abstraction

WHRF

no top-level redex

top-level (head) is
a constructor or
a lambda abstraction with no fop-level redex

HNF

no top-level redex

NP

Y
no internal redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

Definition of WHNF and HNF

“The implementation of functional programming languages” [H4]

11.3.1 Weak Head Normal Form

To express this idea precisely we need to introduce a new definition:

DEFINITION
A lambda expression is in weak head normal form (WHNF) if and only if it
is of the form

FEi1 E2... En
where n = 0;

11.3.3 Head Normal Form il i g

Head normal form is often confused| and (F Ey Ez ... Em)is nota redex for any m=n.
some discussion. The content of th An expression has no rop-level redex if and only if it is in weak head normal

since for most purposes head norm;
form. Nevertheless, we will stick to t

or F is a lambda abstraction or built-in function

form.

form

and

A lambda expression is in head normal form (HNF) if and only if it is of the

AX1.A%2. . . AXn.(v My M2 ... Mp)

where n, m = 0;
v is a variable (x;), a data object, or a built-in function;
(v My M2 ..

DEFINITION

. Mp) is not a redex for any p=m.

References : [H4] Ch.11
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Constructor



3. Internal representation of expressions

Constructor

Constructor is one of the key elements
to understand WHNF and lazy evaluation in Haskell.



3. Internal representation of expressions

Constructor

a data value

Coxpg D+ Coxpy 0 Copp 0~ Cexpy D

Y

constructor data components (h 2 0)
(data constructor)

A constructor builds a structured data value.
A constructor distinguishes the data value in expressions.

References : [B2], [H1], [H4] Ch.2, 10, [B6] Ch.11



3. Internal representation of expressions

Constructors and data declaration

constructor ‘\

/7 data component

\

data Maybe a =

Nothing

Just

a

Constructors are defined by data declaration.

References : [B2], [H1]



3. Internal representation of expressions

Internal representation of Constructors for data values

Haskell code GHC's internal representation
header
NOThlng J e -> | No'rh|n9 |

header payload
Just (7 J < === > | Just I f I

7

heap memory

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

Constructors are represented uniformly

GHC's internal representation

header payljt)ad

I
/ R

object type data components

constructor

in heap memory, stack or static memory

A data value is represented with header(constructor) + payload(components).

References : [H11], [H10], [H5], [H6], [H7], [D15]



3. Internal representation of expressions

Representation of various constructors

Haskell code
data Bool = False
| < True
74
data Maybe a =< Nothing
| CJust ) a
74
data Eitherab = Left a
| CRight (b
74

GHC's internal representation

>

>

=

>

=

>

False

True

Nothing

Just

Left

Right

H JE[ 0l

References : [H11], [H10], [H5], [H6], [H7]




3. Internal representation of expressions

Primitive data types are also represented with constructors

Haskell code
data Int =0 T#  Int# J <
N N
|—b‘oxed integer moxed integen

data Char =( C#  ( Char# J <

GHC's internal representation

IT# O#
IT# 1#
ﬁ 1::Int
A ‘a’ :: Char
CH ‘a#
CH 'b'H

heap memory

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

List is also represented with constructors

List
[1,2,3] J
( eyrtactic desugar
1:(2:(3:0])) ]
( prefix notation by section
() 1((:)2(()31)) |

f
. equivalent data constructor
\
<

Cons 1 ( Cons 2 ( Cons 3 Nil )) J

——=

constructor

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

List is also represented with constructors

List

[1,2,3] J

( syntactic desugar
1:(2:(3:[1)) J

( prefix notation by section type declaration

< * pseudo code

()1((:)2((:)31)) | data Lista =[]

- | a  ((List a)

equivalent data constructor A

|
|
\ |
<4 |

v

data List a Nil
| (Cons ) (a )(Lista)

Cons 1 ( Cons 2 ( Cons 3 Nil )) J <

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

List is also represented with constructors

Haskell code
* pseudo code
data Lista =0 []
I a ) ((List a)
7
1

I

|
\
<

equivalent data constructor

data Lista  ='Nil

| (Cons

a  ((List a)

7

GHC's internal representation

'>| []\

9|(=)‘f‘f|

f

! a List a

_\,

> Nil

> | Cons | f | f I
a List a

heap memory

References : [H11], [H10], [H5], [H6], [H7]




3. Internal representation of expressions

List is also represented with constructors

Haskell code

[1,2,3]

(

1:(2:(3:0]1))

(

()1((¢:)2(()311))

Cons 1 (Cons 2 ( Cons 3 Nil ))

<

GHC's internal representation

Eons(:! f | i |

1 Eons(:l f | f I

2

ons (:

3

Nil ([1)

References : [H11], [H10], [H5], [H6], [H7]




3. Internal representation of expressions

Tuple is also represented with constructor

Tuple (Pair)

(7,8)

( prefix notation by section

type declaration

* pseudo code

data Pair a=C (,) '(a /[ a J

4= T~

constructor

data Pair a= (Pair)( a ( a J

References : [H11], [H10], [H5], [H6], [H7]




3. Internal representation of expressions

Tuple is also represented with constructor

Haskell code
data Pair a=C (,) '{a /[ a
1

I 9
| equivalent data constructor
\
<

data Pair a= ( Pair ' ( a a

GHC's internal representation

> ()
a a
4
]
1
2
->| Pair | f | f I
a a

heap memory

References : [H11], [H10], [H5], [H6], [H7]




3. Internal representation of expressions

Tuple is also represented with constructor

Haskell code

(7,8) |

.
()78

r I 4
Pai‘r' 7 8 GHC's internal representation

' <« |
>
| Pair (,) | i | i I
7 8

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

Thunk




3. Internal representation of expressions

Thunk

Haskell code GHC's internal representation

luated expressi a thunk
i . :
dn Unevaluated expression/ . —. —. — (an unevaluated expression/

a suspended computation)

heap memory

A thunk is an unevaluated expression in heap memory.
A thunk is built to postpone the evaluation.

References : [B5] Ch.2, [D5], [W1], [H10], [H5], [D7]



3. Internal representation of expressions

Internal representation of a thunk

Haskell code GHC's internal representation

thunk

An unevaluated expression payload
A

header \
@ P I > | info ptr | | I I

code free variables

A thunk is represented with header(code) + payload(free variables).

References : [H11], [H10], [D2], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]



3. Internal representation of expressions

A thunk is a package

thunk

A thunk is a package of code + free variables.

References : [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]



3. Internal representation of expressions

A thunk is evaluated by forcing request

Haskell code

An unevaluated expression

ﬂ evaluate
by forcing request

An evaluated expression

References : [D7], [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1], [D15]

GHC's internal representation

thunk

header paylg ad \

| info ptr | | I

code free variables
B evaluate
by forcing request

| Cons () | I | I I

3 Nil ([1)




Uniform representation



3. Internal representation of expressions

Every object is uniformly represented in memory

l
header payfad \

| I
/ N\

object type data components

constructor,
function,
thunk, ...

in heap memory, stack or static memory

References : [H11], [H10], [H5], [H6], [H7], [D15]



3. Internal representation of expressions

Every object is uniformly represented in memory

header pc)x\yload

f \

a data value a function value a thunk

References : [H11], [H10], [H5], [H6], [H7], [D15]




3. Internal representation of expressions

Every object is uniformly represented in memory

payload
A

f \

a data value a function value a thunk

header

\ J \ J \ J
constructor N code v C
data components . free variables free variables
+ arguments
stack or
registers

* At exactly, a thunk object has
a reserved field in second.

References : [H11], [H10], [H5], [H6], [H7], [D15]
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WHNF




3. Internal representation of expressions

Internal representation of WHNF

Haskell code GHC's internal representation
a data value in WHNF heap memory
Cow > Com D - Cooo o o> Laed o 1. |
|
\ . ) constructor exp,
constructor data component(s) I I- I
exp1q
\ Y J
data component(s)

a function value in WHNF

Z lambda abstraction code . % 4

(exp) free variables

7

References : [H11], [H5], [H6], [H7], [H10]



3. Internal representation of expressions

Example of WHNF for a data value

Haskell code GHC's internal representation
Just (take x [1..]) €= — 1> I Just l . I
. , constructor

Y
constructor a redex

an unevaluated expression

’rhunkl Q l . I
! |
X

take x [1..] J

free variables

Constructors can contain unevaluated expressions by thunks.
Haskell's constructors are lazy constructors.

References : [H11], [H5], [H6], [H7], [H10]



3. Internal representation of expressions

Example of WHNF for a data value

Haskell code

[ map f xs ]

( syntactic desugar

Cons (map f xs) Nil

\ J
A4

constructor  aredex
an unevaluated expression

GHC's internal representation

2 N .

constructor

A

Nil

thunk

J f Xs
map f xs \ - v

free variables

References : [H11], [H5], [H6], [H7], [H10]




let, case expression



3. Internal representation of expressions

let, case expression

let and case expressions are special role in the evaluation



3. Internal representation of expressions

let/case expressions and thunk

force
build thunk (evaluate)
let eXPPZSSiO”J ————— [(unevaluated expression/| —_ | case ZXPPQSSiOHJ
(allocate) suspended computation) extract o
(deconstruct)

A let expression may build a thunk.
A case expression evaluates (forces) and deconstructs the thunk.

References : [H5], [H6], [H7], [H10]



3. Internal representation of expressions

A let expression may allocates a heap object

let expression

let [x : ] allocate
(build)

heap memory

a data value

or

a function value

or

a thunk
(an unevaluated expression)

A let expression may allocates an object in the heap.
(If GHC can optimize it, the let expression may not allocate.)

* At exactly, STG language's let expression rather than Haskell's let expression

References : [H5], [H6], [H7], [H10]



3. Internal representation of expressions

Example of let expressions

Haskell code GHC's internal representation

a data value

allocate
let x = Just5 T | Just | I |
5

a function value

allocate
let x= \y >y+z —
p Z

\y >y+z :
free variables

a thunk

allocate

let x= take y ys ~ (build) s

Y Ys

take y ys ; N
Y J free variables

J

References : [H5], [H6], [H7], [H10]



3. Internal representation of expressions

A case expression evaluates a subexpression

heap memory

. | adata value or
case expression (1) pattern-matching drives a function value or
/

the evaliiation —— a thunk
case x of —

patternl | -> altl

pattern2|-> alt2

4 ﬂ evaluate

an evaluated value
(a data value or
a function value)

X
[ J
\ 4

Pattern-matching drives the evaluation.

* At exactly, STG language's case expression rather than Haskell's case expression
References : [H5], [H6], [H7], [H10], [D2]



3. Internal representation of expressions

A case expression also perform case analysis

heap memory

case expression (1) pattern-matching drives

the eval

case x of ]

PN patternl | -> altl

pattern2|-> alt2

iation —— |

a data value or

| a function value or

\ 4

a thunk

— 7

B evaluate

(2) select alternative
expression
with result value

an evaluated value

\ 4

(a data value or
a function value)

A case expression evaluates a subexpression
and optionally performs case analysis on its value.

* At exactly, STG language's case expression rather than Haskell's case expression

References : [H5], [H6], [H7], [H10], [D2]



3. Internal representation of expressions

Example of a case expression

heap memory

a thunk

i . . X
dels ez pliesalel (1) pattern-matching drives //'_—’.‘—’—L—I—L—I—I
the evalliation ——

case x of —]
f xs b Y /
_— Just _ |-> True free variables
Nothing |-> False
- 7

B evaluate

(2) select alternative

. |
expression X of—| Just | I I
with result value

5

A case expression's pattern-matching says "I need the value”.

References : [H5], [H6], [H7], [H10], [D2]



3. Internal representation of expressions

Pattern-matching in function definition

pattern-matching in function definition pattern-matching in case expression

f
f

— i =)
— P Just -> True

Nothing | = False icd N
syntactic desugar Nothing| -> False

7

A function's pattern-matching is syntactic sugar of case expression.

A function's pattern-matching also drives the evaluation.

References : [H1]



4. Evaluation




Evaluation strategies



4. Evaluation

Evaluation

An expression

o

evaluate

A ¥ 4

>

A value

The evaluation produces a value from an expression.

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3



4. Evaluation

There are many evaluation approaches

An expression

evaluation|strategies
x - Strict, Non-strict evaluation
- Eager, Lazy evaluation
- Call-by-value, Call-by-name,

Call-by-need, ...

- Innermost, Outermost
[ 3] - Normal order, Application order

A value

References : [B3]Ch.2, 7, [B6] Ch.3, [D1]



4. Evaluation

Evaluation concept layer

Denotational semantics

Operational semantics
(Evaluation strategies / Reduction strategies)

Implementation techniques




4. Evaluation

Evaluation layer for GHC's Haskell

Denotational [ Strict semantics ] [ Non-strict semantics ]
semantics
[ Strict evaluation ] [Non-s’rric’r evalua‘rion]
Oper'a‘rlonal [ E luati ] [ Nondeterministic ] [ L luati ]
D ager evaluation evaluation azy evaluation
(Evalua‘r.ion s‘rr'aTeg.ies/ [ Call-by-Value ] [ Call-by-Name ] [ Call-by-Need ]
Reduction strategies)
[ Applicative order reduction ] [ Normal order reduction ]

[Righ‘rmos‘r reduc‘rion] [Innermos‘r reduc‘rion] [Lef‘rmos‘r reduc‘rion] [Ou‘rermos‘r reduc‘rion]

Implementation

. Tree reduction ] [ Lazy graph reduction ]
techniques [ y grap

References : [D3], [D1], [D2], [D5], [D4], [B2] Ch.7, [B3] Ch.8, [B6] Ch.5, [W1], [W2], [W3], [B7], [B8]



4. Evaluation

Evaluation layer for GHC's Haskell

ell 2010 5pecifica’rion

Hask
Denotational [ Strict semantics ] [ Non-strict semantics ]
semantics
GHC's strategy
[ Strict evaluation ] Non-s’rr'ic:evalua‘rion reay
Oper'a‘rional Nondeterministic g

) Lazy evaluation ]
semantics ] [ Y GHC's strategy

(Evaluation strategies/ [ Call-by-Value ] [ Call-by-Name ] I Call—by—Neeﬂ

Reduction strategies) GHC's stratedy

[ Eager evaluation ] [

evaluation

[ Applicative order reduction ] [ Normal order reduction =

[Righ‘rmos‘r reduc‘rion] [Innermos‘r r'educﬂon] [Lef‘rmos’r reduc’rion] [Ou‘rermosf r'educ‘rion]

GHC's stratedy

Implementation

. Tree reduction ] [ Lazy graph reduction ]
techniques [ y arap

GHC's implementation

References : [D3], [D1], [D2], [D5], [D4], [B2] Ch.7, [B3] Ch.8, [B6] Ch.5, [W1], [W2], [W3], [B7], [B8]



4. Evaluation

Evaluation strategies

Each evaluation strategy decides how to operate the evaluation, about ...

ordering,

region,

trigger condition,
termination condition,
re-evaluation, ...

References : [D3], [D1], [D2], [D5], [D4], [B2] Ch.7, [B3] Ch.8, [B6] Ch.5, [W1], [W2], [W3], [B7], [B8]



4. Evaluation

One of the important points is the order

which first?

/\
o\

function arguments

y AN
apply first / \\ar‘gumem‘ first
lazy evaluation, eager evaluation,
call-by-name, call-by-value,
call-by-need, innermost reduction,
outermost reduction, applicative order reduction
normal order reduction

References : [D3], [D1], [D2], [D5], [D4], [B2] Ch.7, [B3] Ch.8, [B6] Ch.5, [W1], [W2], [W3], [B7], [B8]



4. Evaluation

Simple example of typical evaluations

default ‘
C, Java, JavaScript,

call-by-value

square (1+2)

¥ argument

evaluation

B first

Python, OCaml, Scheme, ...

default
Haskell (GHO), -..

call-by-need

square (1+2)

L apply
first
igs

References : [B2] Ch.7, [B3] Ch.8, [D4], [B6] Ch.5



4. Evaluation

Simple example of typical evaluations

call-by-value

square (1+2)

a

square ( 3)
T~ evaluation is
Il performed
3*3
9

call-by-need

square (1+2)

a

(1+2)*(1+2)

evaluation is

I Ldelayed!
(3)*(3)

a

9

References : [B2] Ch.7, [B3] Ch.8, [D4], [B6] Ch.5



Evaluation in Haskell (GHC)



4. Evaluation

Key concepts of GHC's lazy evaluation

reduce in normal order and

An expression :
postpone the evaluation of arguments

S to evaluate only when needed

fun args
yd

7

drive the evaluation

by pattern-matching
evaluate

stop at WHNF
to evaluate only enough

update itself

to evaluate at most once
WHNF <

A value

References : [H4] Ch.11, 12, [H5], [H6], [D2]



4. Evaluation

Postpone the evaluation of arguments

Haskell code

fun (map gl ys)

74
( internal translation
postpone a thunk
let ‘rhunka[map gl ys ]’md)\‘ I Q l . l . I
in fun thunkO l l

p v \91 ys l
map gl ySI Y

free variables

heap memory

postpone the evaluation by a thunk which build with let expression
(When GHC can optimize it by analysis, the thunk may not be build.)

References : [H5], [H6], [H10]



4. Evaluation

Pattern-matching drives the evaluation

heap memory

case expression pattern-matching drives

the evalliation ——
case x of —

patternl | -> altl
pattern2|-> alt2

a thunk

drive the evaluation by pattern-matching

References : [H5], [H6], [H7], [H10], [D2]



4. Evaluation

Haskell code

ofgor] o ] o |
an unevaluated expression | |
\ 4 \ J

Stop at WHNF

GHC's internal representation

a thunk

Y
code I free variables

heap memory

evaluate evaluate
WHNF ) a value (WHNF)
T TS r” T TS oo
S.exp_4 -..n.exp_- ° [
v
evaluated
L evaluated

stop the evaluation at WHNF

References : [H5], [H6], [H10]



Examples of evaluation steps



4. Evaluation

(1) Example of GHC's evaluation

@abs 1 -2, 3])>

Let's evaluate. It's time to magic!

* no optimizing case (without -O)



4. Evaluation

(2) How to postpone the evaluation of arguments?

m abs [1,-2, 3] >
X
\z Largumen‘r

function




4. Evaluation

(3) GHC internally translates the expression

@abs (1, -2, 3]) >

(in’rernal translation

let thunkO = map abs [1, -2, 3]
in tail thunkO




4. Evaluation

(4) a let expression builds a thunk

@abs (1, -2, 3]) >

heap memory

(in‘rernal translation

thunk

let thunk0 = map abs [1,-2,3] | O 2uidl. . |, | ; | ; |
in tail thunkO mapf';sl abs [1-2,3]




4. Evaluation

(5) function apply to argument

@abs (1, -2, 3]) >

heap memory

(in‘rernal translation

thunk

let thunkO = map abs [1,-2, 3] L. | ; | ; |
in| tail thunkO map f‘;sl abs [1,-2,3]

apply




4. Evaluation

(6) tail function is defined here

@abs (1, -2, 3]) >

heap memory

(in‘rernal translation

thunk

let thunkO = map abs [1,-2, 3] L. | ; | ; |
. . mapfxsl abs [1,-2,3]

definition

tail (_:xs) = xs




4. Evaluation

(7) function's pattern is syntactic sugar

@abs (1, -2, 3]) >

heap memory

(in‘rernal translation

thunk

let thunkO = map abs [1,-2, 3] L. | ; | ; |
. . mapfxsl abs [1,-2,3]

tail (_:xs) = xs

syntactic (

g
desugar

tail y = case y of
(_:xs) -> xs




4. Evaluation

(8) substitute the function body (beta reduction)

@abs (1, -2, 3]) >

heap memory

(in‘rernal translation

thunk

L-J_I_LIJ
map f‘§<5| abs [1-23]

let thunkO = map abs [1, -2, 3]
in tail thunkO

tail (_:xs) = xs

,\
tail y = case y of

1y _ / (Lixs) -> xs

case ’rhunkOif
(_:xs) -> xs

reduction




4. Evaluation

(9) case pattern-matching drives the evaluation

@abs (1, -2, 3]) >

heap memory

(in‘rernal translation
thunk

L-J_I_LIJ
map f‘§<5| abs [1-23]

let thunkO = map abs [1, -2, 3]
in tail thunkO

tail (_:xs) = xs

,\

evaluate
tail y = case y of /ﬂ
/) (ixs)->xs d

A g rive the evaluation
— (forcing request)

_ 4
case thunkO of —
|(_:xs) }> XS
—_




4. Evaluation

(10) but, stop at WHNF

@abs (1, -2, 3]) >

heap memory

(in‘rer'nal translation

thunk

let thunkO = map abs [1, -2, 3]
in tail thunkO

map f xs| abs [1,-2,3]

tail (_:xs) = xs
_( T ﬂ evaluate
tail y = case y of
A4 / (_ixs) -> Xs stop at constructor

&

_ 4 Cons
@unkO of > WHNF I—LI—I—I—I
(_2XS) |> XS thunk thunk

evaluated @ —

case (abs 1): (map abs [-2, 3]) o
(_:xs) -> xs absx | 1 map f xs| abs [-2,3]




4. Evaluation

(11) bind variables to a result

@abs (1, -2, 3]) >

heap memory

(in‘rer'nal translation

thunk

let thunkO = map abs [1, -2, 3]

in tail thunkO map f xs| abs [1,-2,3]

tail (_:xs) = xs
_(-\ ﬂ evaluate

tail y = case y of

7 / (_1XS) -> XS constructor
o
4 Cons
oot | EEg

. =->

T (Lixs) > xs — | thunk thunk

case (abs 1): (map abs [-2, 3]) o
(_:xS’)f;xs absx | 1 map f xs| abs [-2,3]

R




4. Evaluation

(12) return the value

@abs (1, -2, 3]) >

heap memory

(in‘rer'nal translation

thunk

let thunkO = map abs [1, -2, 3]
in tail thunkO

map f xs| abs [1,-2,3]

tail (_:xs) = xs

_(_\ ﬂ evaluate
tail y = case y of

4 / (_:XS) -> XS constructor
o
= Cons
case thunkO of I—LI—LI—I

:XS) -> XS

(_ ) thunk thunk

absx | 1

11

case (abs 1) : (mapabs[-2, 3]) o
(_:xs) -E—b

-~

map f xs| abs [-2,3]

/

map abs [-2, 3]

it
vy

a result value



4. Evaluation

Key points
tail (map abs [1, -2, 3])
( internal translaf’ postpone by thunk emory
thunk
let thunkO = map abs [1, -2, 3]
in tail thunkO map f xs| abs [1,-2,3]
tail (_:xs) = xs
_(‘\ evaluate
tail y = case y of stop at WHNF
v / (Lixs)->xs : constructeF =
pa‘r’rer‘n—ma’rch drive the evaluation Core
case thunkO0 é—=—" l_LI_LI_I
+XS) -> XS
(— ) thunk thunk

v

(c(abs 1) : (map abs [-2, 3]) o
(_:xs) -> xs absx | 1 map f xs| abs [-2,3]

VAV

a result value

|




Examples of evaluations

* no optimizing case (without -O)



4. Evaluation

Example of repeat

repeat 1 J
g

1 : repeat 1 J
g

1:1: repeatl J
1

1:1:1: repeatl J

References : [D5], [D6], [D8], [D9], [D10], [H10]



4. Evaluation

Example of repeat

repeat 1 J
-D— Cons
1 : repeat 1 J : thunk
X i
.| Cons 1 (repeat 1) J
|
0 iyt
Cons Cons
1:1: repeatl J S -
: un
k\‘ Cons 1 (Cons 1 (repeat1)) LT “_:i 1
’ repeat 1
au gk
1:1:1: repeatl J <. —. | |Cons Cons Cons
\A Cons 1 (Cons 1 (Cons 1 (repeat1)) )J : - : thunk
;
-
I repeat 1

a

References : [D5], [D6], [D8], [D9], [D10], [H10]



4. Evaluation

Example of map

map f [1,2, 3] J
iy

£1: mapf[2,3] J
iy

fl1:f2: mapf[3] J

fl:f2:f3 |

References : [D5], [D6], [D8], [D9], [D10], [H10]



4. Evaluation

Example of map

map f [1,2,3] J
iy
f1: mapf[2,3] J < —. >
[ Cons (F 1 (map f [2, 3]) J
4
fl1:f2: mapf[3] J P

Cons (f 1) (Cons (f 2) (map f [3])) J

4

. f2: 3 |

< — >

Cons (f 1) (Cons (f 2) (Cons (f 3) Nil))J

=

a
Cons Cons Cons
1 2 3
a

References : [D5], [D6], [D8], [D9], [D10], [H10]




4. Evaluation

Example of foldl (non-strict)

foldl (+) O [1..100] J

0

foldl (+) (0 + 1) [2 .. 100] J

g

foldl (+) (0+1)+2) [3.. 1oo1J

g

foldl (+) (((O+1)+2)+3) [4.. 100] J

References : [D5], [D6], [D8], [D9], [D10], [H10]



4. Evaluation

Example of foldl (non-strict)

foldl (+) O [1..100] J

0

foldl (+) (0 + 1) [2 .. 100] J

A

\
A

let thunkl = (0 + 1)
: <—- >
in foldl (+) thunkl [2 .. 100]

g

foldl (+) ((0+1)+2) [3..100]

A

\
SA

let thunk2 = (thunkl + 2)
in foldl (+) thunk2 [3 .. 100]

7
g

foldl (+) (((O+1)+2)+3) [4.. 100] J

A

\
A

let thunk3 = (thunk2 + 3)
in foldl (+) thunk3 [4 .. 1001 | < 7

=

heap memory

*show only accumulation value

thunkl

(+)
thunkl thunk2

(+) (+)

B’ increasing heap ...

thunk1 thunk?2 thunk3

(+) (+) (+)

3

References : [D5], [D6], [D8], [D9], [D10], [H10]




4. Evaluation

Example of foldl' (strict)

foldl' (+) O [1..100] J

0

foldl' (+) (0 + 1) [2 .. 100] J

g

foldl' (+) (1 + 2) [3 .. 100] J

a

foldl' (+) (3 + 3) [4 .. 100] J

References : [D5], [D6], [D8], [D9], [D10], [H10]



4. Evaluation

Example of foldl' (strict)

foldl' (+) 0 [1..100] J

ﬂ' heap memory
foldl' (+) (0 + 1) [2 .. 100] J it v !
r ) ' I# | 1#
', | let thunkl=(0+1) I | eval
|
in thunkl "seq’ <—->! 0 1 | by seq
|
foldl' (+) thunkl [2 .. 100] : !
L e e e e e - - |
igs igh
foldl' (+) (1 + 2) [3 .. 100] J rTfhunkE T T T T !
A Te) : !
I# | 3#
*\‘ let thunk2 = (1+2) : () LT I—l-—l
|
in thunk2 seq’ <—-> ! 2 i
foldl’ (+) thunk2 [3 .. 100] N T P |
D e e e e e e e e e e - - |
D- -D— fixed heap size
foldl' (+) (3 + 3) [4 .. 100] J T Fhunk3 T T T T T T ! —
) : !
I# | 6#
k\‘ let thunk3 = (3 + 3) : () LT I—I—l
|
in thunk3 "seq’ <— > : 3 i
foldl' (+) thunk3 [4 .. 100] ol T# | 3# !
L e e e e e — - |
igs

References : [D5], [D6], [D8], [D9], [D10], [H10]



4. Evaluation

Example of foldl (non-strict) and foldl’ (strict)

foldl (+) (0 + 1) [2 .. 100] foldl' (+) (0 + 1) [2 .. 100]
a a

foldl (+) ((0+1)+2) [3..100] foldl' (+) (1 + 2) [3 .. 100]
a a

foldl (+) (0 +1)+2)+3) [4..100] foldl' (+) (3 + 3) [4 .. 100]
a

References : [D5], [D6], [D8], [D9], [D10], [H10]



4. Evaluation

Example of foldl (non-strict) and foldl’ (strict)

foldl (+) (O + 1) [2 .. 100]

(+)

o 1

heap memory

0

foldl (+) ((O+1)+2) [3..100]

L|(+)| T | T | L)

o 1 2

a

foldl (+) ((0+1)+2)+3) [4..100] |

increasing heap ...

Ll(+)|T|IILl(+)|T|II (+)
0 1 2 3
LL

foldl’ (+) (0 + 1) [2 .. 100]

- [® L
: :
- 0 1
| |
L e o :
a
foldl' (+) (1 + 2) [3 .. 100]
|
=
:
|
|
|
|
igh
foldl' (+) (3 + 3) [4 .. 100] | fixed heap size
—

References : [D5], [D6], [D8], [D9], [D10], [H10]



Controlling the evaluation



4. Evaluation

|

How to drive the evaluation

[

driving the evaluation by

[and deconstructing by]

! ! ! ! ! { *ghc80~ !
pattern- primitive strict forcing special special compile
matching operation function function syntax pragma option

case expression + % foldl’ seq ! Strict -0
function definition scanl’ $! StrictData -fstrictness
pseq
deepseq
force -XStrict
$ll -1(S‘rr'ic‘rDa‘ra
ghc 8.0 ~

rnf



4. Evaluation

(1) Evaluation by pattern-matching

pattern-matching in case expression

(drive the evaluation of the thunk)

case ds of

->f x Xxs

-> False

pattern-matching in function definition forci
orcing
(drive the evaluation of the thunk)

f | Just _
f | Nothing

True

False

References : [H1] Ch.3, [D2], [D1], [H5], [W1]



4. Evaluation

(1) Evaluation by pattern-matching

Strict patterns drive the evaluation Lazy patterns postpone the evaluation.
case expression let binding pattern
case ds of let = fun args
xixs |->f x xs
[] -> False
74 74
function definition irrefutable patterns [H1]3.17
f | Just _ |= True f| ~(Just _) |= True
f | Nothing | = False f| ~(Nothing) |= False
7 7

There are two kinds of pattern-matching.

References : [H1] Ch.3, [D2], [D1], [H5], [W1], [H8] Ch.4



4. Evaluation

(2) Evaluation by primitive operation

fxy=x+y
™S~

primitive (built-in) operation
forcing x and y
(drive the evaluation of the thunks)

| N

*x

+
’ 1 e

primitive operations are defined such as
* pseudo code

(+) (T# a) (I# b) = I# (a+b)
X

\

pattern-matching

References : [D3], [H5], [H12]



4. Evaluation

(3) Evaluation by strict version function

strict version function
strict application of the operator
foldl" (+) O xs
scanl’ (+) O xs J

References : [B4] Ch.25, [D9], [B6] Ch.7, [B2], [S1], [S2]



4. Evaluation

(4) Evaluation by forcing function

forcing functions o WHNF
forcing
seq X Yy (drive the evaluation of the thunk)

4
f$l x

4
pseq Xy

7

forcing functions o NF

deepseq x vy

7
f $Il x

4
force x

7
rnf x

F

References : [B5] Ch.2, [B4] Ch.24, 25, [B6] Ch.7, [H1] Ch.6, [D2], [B2], [D1], [D2]. [S1], [S2]



4. Evaluation

(4) Evaluation by forcing function

to WHNF

an expression

seq

$!
pseq

evaluate

to NF

an expression

deepseq
force
$!

rnf

evaluate

References : [B5] Ch.2, [B4] Ch.24, 25, [H1] Ch.6, [D2], [B2], [D1], [D2]. [S1], [S2]



4. Evaluation

(4) Evaluation by forcing function

4 to WHNF . - to NF n
two arguments seq deepseq
one argument force
function application $! $ll
sequential order pseq
basic operation rnf
\_ 2N /

References : [B5] Ch.2, [B4] Ch.24, 25, [H1] Ch.6, [D2], [B2], [D1], [D2]. [S1], [S2]



4. Evaluation

(4) Evaluation by forcing function

( to WHNF B - to NF w

definition
I built-in ’\ /‘ deepseqab = rnf a'seq’ b
Two expressions seq deepseq
/‘ force x = x " deepseq” x
ohe expression force
—— f$!x =letlvx=xinfvx ’\ /‘ f $!l x = x “ deepseq” f x
function application $! $!l

class NFData a where

,\ rnf it a-> ()

sequential order pseq ins.Tance NFData Int where rnf I_ = ()

pseq Xy =X seq lazyy

/ instance NFData a => NFData [a] where

rnf [1= ()
rnf (x:xs) = rnf x “seq” rnf xs

basic operation rnf

N AN

References : [B5] Ch.2, [B4] Ch.24, 25, [H1] Ch.6, [D2], [B2], [D1], [D2]. [S1], [S2]



4. Evaluation

(4) Evaluation by forcing function

a=map abs [1,-2, 3, -4]

J evaluate head only

(
1
1
1
1
\

seq a ()

/‘ full evaluation

________________________________________________________________________________________

deepseq a ()

P

length a

abs x| 1 abs x| -2 abs x| 3 abs x | -4

References : [B5] Ch.2, [B4] Ch.24, 25, [H1] Ch.6, [D2], [B2], [D1], [D10]. [S1], [S2]



4. Evaluation

(5) Evaluation by special syntax

Strictness annotation

Bang pattern [H2]7.19 see also Strict pragma

{-# LANGUAGE BangPatterns #-} -
arguments are evaluated

before function application
f Ixs = g xs

74
Strictness flag [H1]4.2.1 see also StrictData and Strict pragma
///a:;umen‘rs are evaluated
data Pair = Pairf |£ before constructor application
74

Strictness annotations assist strictness analysis.

References : [D1], [H2] Ch.7, [H1] Ch.4, [B4] Ch.25, [B2] Ch.7, [W6], [H4] Ch.22, [W4]



4. Evaluation

(6) Evaluation by special pragma

Special pragma for strictness language extension

Strict pragma * ohe 8.0 ~ |
= ° see also bang pattern and strictness flag

{-# LANGUAGE Strict #-}
/ar'-;umen‘rs are evaluated
/ before application

data Pair = Pair a b 7

let f xs = g xs in f ys

StrictData pragma ™ ghc 8.0 r—" = " rictness flag

{-# LANGUAGE StrictData #-}

data Pair = Pair a b

74

Strict and StrictData pragmas are module level control.
These can use in ghc 8.0 or later.

References : [H13]



4. Evaluation

(7) Evaluation by compile option

Compile option

strictness analysis

Turn on optimization.

$ ghC -0 Imply "-fstrictness"”.
7
Turn on strictness analysis.
$ ghc -fstrictness Implied by "-O".
7

strictness language extension  x ghc 8.0 ~

$ ghc -XStrict apply Strict pragma

$ ghc -XStrictData apply StrictData pragma

References : [H2], [H13]
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5. Implementation of evaluator

Tree

An expression can be represented in the form of Abstract Syntax Tree (AST).
AST is reduced using stack (sequential access memory).

References : [D3], [D2], [D5], [W5], [H4] Ch.12, [B8] Ch.3



5. Implementation of evaluator

Graph

erm

An expression can be also represented in the form of Graph.
Graph can share subexpressions to evaluate at once.

So, graph is reduced using heap (random access memory) rather than stack.

References : [D3], [D2], [D5], [W5], [H4] Ch.12, [B8] Ch.3



5. Implementation of evaluator

Graph can be reduced in some order

4 )

top-level redex

e
w which first ?

ﬁ_ inner level redex

COIREDIED
J

\
reduce inner level first & 2 reduce top-level (outermost) first

for call-by-value for call-by-need

]
1
]
]
@ '
]

1

1

1

1

]

]

]

]

]

1

1

1

]

]

]

]

]

|

_______________________________________________

________________________________________________

To select top-level redex first, the evaluation of arguments can be postponed.

References : [D3], [W5], [H4] Ch.11, 12, [B8] Ch.3



5. Implementation of evaluator

Normal order reduction is implemented by lazy graph reduction

Normal order reduction Lazy graph reduction

find top-level redex
and reduce it

implemented by
/_\\

an expression

N

»

Normal order (leftmost outermost) first

Normal order (leftmost outermost) reduction is implemented by lazy graph reduction
to select top-level redex first.

Given an application of a function, the outermost redex is the function application itself.

References : [D3], [D2], [D5], [W5], [H4] Ch.11, 12, [B8] Ch.3
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5. Implementation of evaluator

Abstract machine

Graph

(expression)

evaluate
(reduce / execute)

\

Evaluator

(abstract machine) STG-machine

GHC uses abstract machine to reduce the expression.
It's called "STG-machine”.

References : [H5], [H6], [H7], [D15]



5. Implementation of evaluator

Concept layer

Haskell code take 5 [1..10]

Graph
(internal representation
of the expression)

STG-machine

TG Rea
Evaluator (reducer, executer) S Gleegnsmrs Stack Heap

(abstract machine) O

References : [H5], [H6], [H7], [D15]



5. Implementation of evaluator

STG-machine
STG-machine
STG Registers Stack Heap
R1, ... O
-

STG-machine is abstraction machine
which is defined by operational semantics.

STG-machine efficiently performs lazy graph reduction.

References : [H5], [H6], [H7], [D15]



5. Implementation of evaluator

STG-machine

STG-machine
STG Registers Stack Heap Static
R1, ... - —
/ -
/ / \\ \\
mainly used for mainly used for mainly used for mainly used for
call/return convention  nest continuation  allocating objects  code
various control argument passing  (thunks, datas, static objects
functions)

References : [H5], [H6], [H7], [D15]



5. Implementation of evaluator

Example of mapping a code to a graph

main = print (head [1..])

References : [H5], [H10]



5. Implementation of evaluator

Example of mapping a code to a graph

main = print (head [1..])

References : [H5], [H10]



5. Implementation of evaluator

Example of mapping a code to a graph

main = print (head [1..])

main

print

unctio

Functio

References : [H5], [H10]



5. Implementation of evaluator

Expression

Self-updating model

GHC's internal representation

a thunk

expression code free variables

update code

74

ﬂ evaluate and update
(replace myself to result value)

a data value

\ J
L4

constructor
data components

References : [H5], [H6], [H7], [D15]



5. Implementation of evaluator

Unreferenced expressions (objects) will be removed by 6C

Expression

B evaluate and update

collected by GC(Garbage Collection)

GHC's internal representation

a thunk

B evaluate and update

an evaluated expression

I_LJ__I

collected by 6C(Garbage Collection)

References : [H5], [H6], [H4] Ch.12, [D15]



5. Implementation of evaluator

STG-machine associates directly ...

heap memory

lazy , \mmmmm 2 'I E_L‘J._,

(non-strict)

bind with a lazy expression

(Ax . body ) arg

i
eager

(strict) CGS/e'EiFé:X evaluate the arg

4

X an evaluated value

[— L1

bind with an evaluated expression

STG-machine associates directly lambda calculus and physical machine.

References : [H5], [H6], [H4] Ch.3



5. Implementation of evaluator

The STG-machine is ...

-

/ I N I P
—* )
Lambda calculus Turing machine

The STG-machine is the marriage of Lambda calculus and Turing machine.



5. Implementation of evaluator

STG-dump shows which expression is built as thunks

heap memory

[Example.hs] thunk
module Example where L‘ | t | tl
1n= 1 (f1 :
fun f1 n=take 1 (f1 n) 5 > | £1 sQT n_sQUJ fl_sQT n_sQU

STG code dump
by "$ ghc -O -ddump-stg Example.hs"

Example.fun build/allocate

\rsrt:SRT:[1[fl sQT n_sQU]
let {
sat_sQV

\'s srt:SRT:[]1[] f1_sQT n_sQU; L
}in GHCList.fake_unsafe_UInt Tsaf_sQV: | let expression in STG language

References : [H5], [H6], [H7], [D15]
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6. Semantics

Bottom




6. Semantics

A well formed expression should have a value

An expression

evaluate

C_ ¢

A value

References : [B2] Ch.2, [W4]



6. Semantics

What is a value in this case?

An expression a non-terminating expression

infinite loop or
partial function

evaluate

A value ?

References : [B2] Ch.2, [H1] Ch.3, [W4], [H4] Ch.2, 22



6. Semantics

A value "bottom” is introduced

An expression a non-terminating expression

infinite loop or
partial function

evaluate

) bottom

1

A value

References : [B2] Ch.2, [H1] Ch.3, [W4], [H4] Ch.2, 22



6. Semantics

Bottom

A value

1

Bottom (L) is "an undefined value".
Bottom (L) is "a non-terminating value”.

References : [B2] Ch.2, 9, [H1] Ch.3, [W4], [H4] Ch.2, 22



6. Semantics

“undefined” function represents "bottom" in GHC

Haskell code Expression GHC's internal representation

GHC.Err.undefined

undefined :: a J @ linfg l I

References : [B2] Ch.2, 9, [H1] Ch.3, [W4], [H4] Ch.2, 22
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6. Semantics

Strictness

an expression

definitely evaluated?

A
\l----

Strictness is "evaluation demand” of the expression.

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22, [H15], [H16]



6. Semantics

Strict and non-strict

an expression

AU 4

"Non-strict” means that p— "Strict" means that
the expression may or may not be evaluated. the expression is definitely evaluated.

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22, [H15], [H16]



6. Semantics

Strict and non-strict

an expression

AU 4

"Non-strict” means that p— "Strict" means that
the expression may or may not be evaluated. the expression is definitely evaluated.
/\

GHC implements non-strict semantics by lazy evaluation.

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22, [H15], [H16]



6. Semantics

an expression

a lazy demand

Non-strict

GHC has the lattice of strictness

WHNF or L

a structured strictness demand

a head-strict demand

a hyperstrict demand

Strict

There are multiple levels in strict.

References : [H15], [H16], [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22



6. Semantics

Strictness of a function

function

\ 4

evaluated ?

\ 4

evaluated ?

N

Will arguments be definitely evaluated in the function?

A function places "strictness demands” on each of its arguments.

References : [H15], [H16], [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22



6. Semantics

Strictness of a function is formally defined

definition
fl=7
L

function

Cow e
input output

Strictness of a function can be defined with the association between input and output.

“given a non-terminating arguments, the function will ferminate?”

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22



6. Semantics

Definition of the strict function

definition
fl=21
/
Strict function

. -
@ input output

Strict function's output is bottom when input is bottom.

given a non-terminating arguments, strict function will not terminate.

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22



6. Semantics

Definition of the non-strict function

definition
flz 1L

L
Non-strict function

o e
@ input output

an evaluated value or
an unevaluated expression

Non-strict function's output is not bottom when input is bottom.

given a non-terminating arguments, non-strict function will terminate.

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22



6. Semantics

Strict and Non-strict functions

Non-strict

Non-strict function

Ct O ¢ G
input output
an evaluated value or
an unevaluated expression
Strict
Strict function
Coe
input output

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22



6. Semantics

Function application and strictness

Non-strict
PESIERREEERR——— . Non-strict function
——+ |build a thunk s f —_—
an argument passing !
the thunk
| | N
i ! evaluate the argument if needed
Strict i i
i . Strict function
i evaluate |
—— |the argument . — f —
an argument | \/HNF passing !
| the evaluated
: argument S

e

1
I
1
I
1

____________

Postpone or Prepay

no need to evaluate the argument

The front stage is also important.

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22



6. Semantics

Strict and normal form

Example of function application

4 to WHNF A 4 to NF A
Non-strict $
Strict $! $!
(seq) (deepseq)
A\ AN J

Strict # Normal form

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22
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6. Semantics

Lifted types

Lifted type

oo

Lifted types include bottom as an element.

References : [W4], [B2], [H14]



6. Semantics

Lifted type's declaration implicitly include bottom

Bool type

Int type

data declaration

data Bool = False
|  True
Lt J
N~ 7
\ K
implicitly included
data Int = I# Int#

implicitly included

References : [W4], [B2], [H14]



6. Semantics

Lifted type are also implemented by uniform representation

data declaration GHC's internal representation
x i Maybe a
data Maybe a = Nothing " o thing
| Just a —
€ +—-> us Qe
L 11 ] ]
74 L,
undeﬁnedl
code
Xt Int )
data Int = I# Int# . »l | I# O#
(11 ] <L # | 1#
4
‘L.
undeﬁnedl
code

References : [W4], [B2], [H14]



6. Semantics

Lifted and unlifted types

Lifted types Unlifted types

Int type Int# type

e
NS

NS

Lifted types include bottom. Unlifted types do not include bottom.
(Bool, Int, Char, Maybe, List, ...) (Int#, Char#, Addr#, Array#, ByteArray#, ...)

References : [W4], [B2], [H14]



6. Semantics

Example of lifted and unlifted types

Lifted types Unlifted types
x it Justa X i Array#
o =<r Nothing o =‘r datal
Tust data2
a

g data3

v
1l L <

)} y no bottom
code I

X . Int X Int#

° > I# O# H#H7 I
L
I# 1# I no bottom

References : [W4], [B2], [H14]



6. Semantics

Boxed and unboxed types

Boxed ° > value
types pointed
Boxed types are represented as a pointer.
Unboxed value
types

Unboxed types are represented other than a pointer.

N

- no bottom (can't be lifted)

- no thunk (can't be postponed)

- no polymorphism (non-uniform size)
+ low cost memory size (no pointer)

+ high performance (no wrap/unwrap)

References : [W4], [B2], [H14]



6. Semantics

Example of boxed and unboxed types

x . Int X . Array#

SepeEe - 1% | o# o A [datal
types data?2
I# 1#

data3
X .. Int#
Unboxed #7
types ~_
no bottom

References : [W4], [B2], [H14]



6. Semantics

Lifted and boxed types

Lifted types Unlifted types
Int Array#
Char ByteArray#
Boxed Float :
7 ~ 74
\ N\
no bottom
Int#
Char#
Unboxed Float#
types ® :
N r~ 7
unboxed can't be lifted \
no bottom
no packed

References : [W4], [B2], [H14]



6. Semantics

Example of lifted and boxed types

Lifted types Unlifted types
x :: Int X it Array#
o )| I# o# . =‘r datal
g data2
Sergze pointed I# 1#
Types : data3
1o )
/7 v
include bottom code
I—
x . Int#
Unboxed #7
types

References : [W4], [B2], [H14]



6. Semantics

Types and kinds

Lifted types kind Unlifted types kind "
Int Array#
Char ByteArray#
Boxed Float :
types Maybe
74 74
Int#
Char#
Unboxed Float#
types :
74

Note:
Identifier's '# customarily means "primitive” rather than “"unboxed” or “unlifted".
Kind's '#' means "unlifted".
References : [B6] Ch.29, [W4], [B2], [H14]
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6. Semantics

Strictness analysis

function

» evaluated ? _—

analyzed by strictness analyser

Strictness analysis analyzes whether a function is sure to evaluate its argument.

References : [H4] Ch.22, [H8], [W6], [W3], [H15], [H16], [H13], [H2]



6. Semantics

Strictness analysis in GHC

function
» evaluated ? —
0 demand analyser
Strictness demands Absence/usage demands

a lazy demand a used demand

a head-strict demand a head-used demand
a structured strictness demand a structured used demand

a hyperstrict demand unused (absence)

e ey
| T ——————

—————————————————————————————————————

~
-

Demand analysis ( = Strictness analysis + Absence analysis + ... )

GHC's demand analyser implements strictness analysis.

References : [H15], [H16], [H2], [H4] Ch.22, [H8], [W6], [W3], [H13]



6. Semantics

Example of strictness analysis information in GHC

[Example.hs]

module Example where

f1:: Bool -> Int -> Maybe Int
fl ¢ n=case c of
True ->Justn
False -> Nothing

7

Strictness analysis dump
by "$ ghc -O -ddump-strsigs Example.hs"

Example.fl: <S, "l><L, />

NEAN
\\_

L -- second argument is “Lazy"

S -- first argument is “head-Strict"

GHC shows strictness analysis information with "-ddump-strsigs” and "-ddump-stranal”.

References : [H15], [H16], [H2], [H4] Ch.22, [H8], [W6], [W3], [H13]



6. Semantics

(1) Strictness analysis are used to avoid the thunk

non-strict function heap memory
apply I B thunk
on-strict fun@
/4
strict function heap memory

w‘\ — [
@c’r func’rD e ™

< no build

no force
no update
no GC

4

If GHC knows that a function is strict, arguments is evaluated before application.
GHC finds strict functions by "strictness analysis (demand analysis)”.

References : [H4] Ch.22, [H8], [W6], [W3], [H15], [H17], [H13]



6. Semantics

(1) Strictness analysis are used to avoid the thunk

build

hon-strict
let x =arg
in body
let-to-case transformation
strict
case arg of
X -> body

heap memory

thunk

N

heap memory

If GHC knows that a function is strict, GHC performs let-to-case transformation.

References : [H8], [H4] Ch.22, [W6], [W3], [H15], [H17], [H13]



6. Semantics

(2) Strictness analysis are also used to optimize

Strict function

evaluated
an argument evaluate argument ¢
—_— > —_—
the argument
( optimizing
evaluated
e argumenT evaluate ar‘gumen'r if L f L
the argument ! g
9 ifz L or >
a result

A 4
I.'

evaluated (no thunk)
unlifted (no bottom)

ﬁ optimized version

Strictness function can be optimized to assume no thunk, no bottom.

References : [H4] Ch.22, [H8], [W6], [W3], [H15], [H17], [H13]



6. Semantics

an argument
—_—

an argument
—_—

(2) Strictness analysis are also used to optimize

evaluate
the argument

evaluate
the argument

evaluated (nho thunk)
unlifted (no bottom)
unboxed (no packed)

l7

v

wf (worker)

evaluated
argument if L f 1 R
ifz L on .
a result
evaluated (nho thunk)
unlifted (ho bottom) " f
( optimizing lightly inlinable
evaluated
argument if L f (wrapper) L
T ifz L or
unpack — pack >
a result

ﬁ high efficiency

Strictness function can be optimized to assume no thunk, no bottom, no packed.
References : [H4] Ch.22, [H8], [W6], [W3], [H15], [H17], [H13]
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6. Semantics

"seq"” doesn't guarantee the evaluation order

specification

seq a b 1, if a =1
= b, otherwise

S strictness for each arguments

seq L b = L // ais strict
seqa L = 1 // b is strict

“seq" function only guarantee that it is strict in both arguments.
This semantics property makes no operational guarantee about order of evaluation.

References : [H9], [D11], [H1] Ch.6, [S1]



6. Semantics

specification

“Seq" and \\pSeqll

specification

seqab = L, ifa=1 pseqab = L, ifa=1
= otherwise = b, otherwise
T N
seq L b 1 // ais strict pseq L b = L // ais strict
seq a L = // b is strict pseqa L = 1 // b is strict

Both of denotational semantics are the same.
But "pseq” makes operational guarantee about order of evaluation.

References : [H9], [D11], [H1] Ch.6, [S1]



6. Semantics

Evaluation order of “"seq"” and "pseq”

seq a b > time

start termination

-
____—— 1

‘ : no guarantee . guarantee
OIS
l(_——

no guarantee '
evaluation of b

s‘rc:u*’r ‘rer'minia‘rion return from b

pseq a b > Time

start termination
evaluation of a

wmn’ree

evaluation of b

s‘rc:lr“r Termina’:rion r-é’rurn from b

References : [H9], [D11], [H1] Ch.6, [S1]



6. Semantics

Implementation of "seq” and "pseq”

specification specification

seq a b L, ifa=1 pseq ab = 1 if a =1

= b, otherwise = b, otherwise

B R I

Haskell's built-in pseq Xy =x seq lazyy

A
/" N\

GHC's "lazy" function restrains
the strictness analysis.

"seq" is built-in function.
"pseq” is implemented by built-in functions ("seq” and “lazy").

References : [H9], [D11], [H1] Ch.6, [H2] Ch.7, [S1]
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