Lazy evaluation illustrated

for Haskell divers

exploring some mental models and implementations

Takenobu T.

Rev.0.01.0
WIP

u

n

NOTE

- Meaning of terms are different for each community.

- There are a lot of good documents. Please see also references.
-This 1 s written for GHCOs Haske

Contents

1. Introduction 4. Evaluation
- Basic mental models - Evaluation strategies
- Lazy evaluation - Evaluation in Haskell (GHC)
- Simple questions - Examples of evaluation steps
- Examples of evaluations
2. Expressions - Controlling the evaluation
- Expression and value
- Expressions in Haskell 5. Implementation of evaluator
- Classification by values and forms - Lazy graph reduction
- WHNF - STG-machine
3. Internal representation of expressions 6. Semantics
- Constructor - Bottom
- Thunk - Strict/Non -strict
- Uniform representation - Lifted and boxed types
- WHNF - Strictness analysis
- let, case expression - Sequential order
7. Appendix

- References

1. Introduction

Basic mental models

1. Introduction

How to evaluate a program in your brain ?

a program

code
code
code

How to evaluate (execute, reduce) the program in your brain?

Wh a tmerdal model6 do you have?

1. Introduction

C program

A sequence of statements

One of the mental models for C program

A nested structure

}

main (...) {
code.. |
code..
code..
code..

>

x = funcl(func2(a));

A sequence of arguments

y = funcl(a(x), b(x), c(x));

A function and arguments

z=funcl(m+n);

How to evaluate (execute, reduce) the program in your brain?

What step, what order, ... ?

1. Introduction

One of the mental models for C program

C program A program is a collection of statements.
A sequence c/y/st:tements A nested structure

maiy/(...) { x = funcl(func2(a));
code.. « _
code.. “— from inner to outer
code..

A sequence of arguments

code.. |

} \ p y = funcl(a(x), b(x), c(x)):

\— Statements are K ’
executed downward. from left to right

A function and arguments

z=funcl(m+n);

-
<

I\
__ arguments first
apply second

Each programmer has some mental models in their brain.

1. Introduction

One of the mental models for C program

Maybe, You have some implicit mental model in your brain for C program.

(1) A program is a collection of statements

(2) There is the order between evaluations of elements.

l

(3) There isthe order between termination and start of evaluations.

terrrlination

star'tl

This is a syntactically straightforward
(an implicit sequential order model)

»

start | terminatipn
R/

model for programming languages.

1. Introduction

One of the mental models for Haskell program

Haskell program

main = exp,, (eXp,p €XPac €XPaqg)

eXpac = eXpaca eXpacb

eXpad = eXpada eXpadb eXpadc

How to evaluate (execute, reduce) the program in your brain?
What step, what order, ... ?

1. Introduction

One of the mental models for Haskell program

Haskell program : : .
L A program is a collection of expressions .
v

main = exp,, (exp,, €XPyc €XPyq)
eXPye = ©XPgea ach
€XPad = €XPada €XPadb €XPadc 3 @
| %
r——
main = eX_FLaa(eXpab (EXP aca €XPach) (EXP aga €XPadb €XPadc))

\— A entire program is regarded as a single expression.

\ The subexpression is evaluated (reduced) in some order.

\ The evaluation is performed by replacement.

1. Introduction

One of the mental models for Haskell program

(1) A program is a collection of expressions .

(2) A entire program is regarded as a single expression.

main=e(e(e(ee)e(eee)))J %}

(3) The subexpressions are evaluated (reduced) in some order.

f=e(e(e(ee)e(eee))) %

o
»

(4) The evaluation is performed by replacement.

GO GHC2o E:) 3

This is an example of an expression reduction model for Haskell.

Lazy evaluation

1. Introduction

Why lazy evaluation?

To manipulate infinite data structures]

To avoid unnecessary computation J)

To manipulate streames
modularity] _—

J

- pure is order free }
abstraction

To manipulate huge data structures]

amortizing]

potentially parallelism 2nd Church -Rosser theorem]

/

To implement non-strict semantics]

f—

)

out-of -order optimization (

f

V4

—

fun

asynchronization

i

reactive

There are various reasons J
References : [H4], [H3], [B2], [B7], [B8], [D2], [D12], [D13], [D14]

1. Introduction

Haskell (GHC) 0s | azy &eve

Lazy evaluation

4 N\
eval

evaluate only when needed need

+

eval

evaluate only enough {;&;) L

+
evaluate at most once

0 L azydelayiard agidance6 r at her t han odel ayod.

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]

1. Introduction

| ngredient of

only when needed.

normal order reduction

Haskel |l (GHC)

an expression

evaluate

\
+
only enough J stop at WHNF
\
+

at most once

substitute pointers
update redex root with result

\

J

a value

This strategy is implemented by lazy graph reduction.

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]

1. Introduction
Techniqgues of Haskell (GHC)

evaluate

only when needed

normal order reduction
(leftmost outermost reduction)

pattern -matching call-by-need

lazy graph reduction

substitute pointars

update redex root/with result

stop at WHNF

self -updating mode

lazy constructor

full laziness
evaluate

at most once

evaluate
only enough

References : [B2] Ch.7, [H4] Ch.2, 11, 12, 15, [H5], [D2]

Simple questions

1. Introduction

What order?

an expression

0]
.
>

An expression is evaluated by normal order (leftmost outermost redex first).

Normal order reduction guarantees to find a normal form (if one exists).

To avoid unnecessary computation, normal order reduction chooses to apply the function
rather than first evaluating the argument.

References : [H4] Ch.2, 11, [B6] Ch.5

1. Introduction

How to postpone?

heap memory

Haskell code

| an unevaluated expression

expy (exp; exp, exps) — | build/allocate \

thunk

To postpone the evaluation, an unevaluated expression is built in the heap memory.

References : [H4], [H5]

1. Introduction

When needed?

heap memory

pattern -matching

case Xx of

- an unevaluated expression
Just _ |->True T
Nothing

\
-> False :
evaluation request €XP; EeXpP, €XP3

7 /

built -in (primitive operation) 72

X +Yy

forcing request

/
seq Xy

f $! arg

Pattern -matching or forcing request drive the evaluation.

References : [H4], [D2], [D5]

1. Introduction

What to be careful about?

To consider hidden space leak y
L.

]
<:§>g rr;1eean2 ory

To consider performance cost to postpone unevaluated expressions

L.

/_>©
build, force, /‘> > heap
update, gc, ... ¥ memaory

To consider evaluation (execution) order and timing in real world

A — W A —
— —
—

N\
J

B
C C

You can avoid the pitfalls by controlling the evaluation.

References : [H4], [D2], [D5]

2. Expressions

Expression and value

2. Expressions

What is an expression?

An expression

References : [B1] Ch.1, [B2] Ch.2, [B6] Ch.3, [H4] Ch.2

2. Expressions

An expression denotes a value

An expression

T

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2

2. Expressions

An expression is evaluated to a value

An expression

evaluate

>

A value

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2

2. Expressions

There are many evaluation approaches

An expression

evaluation strateqgies
x - Strict, Non -strict evaluation
- Eager, Lazy evaluation
- Call-by-value, Callby-name,

Cal-by-need, &

- Innermost, Outermost
9 - Normal order, Applicative order
- é

A value

References : [B2] Ch.2, 7, [B6] Ch.3, [D1]

2. Expressions

There are some evaluation levels

An expression

take 3 [1..]
WHNF /,/"" | i:___‘_ Ll T .
(Weak Head Normal Form) Ny s e T | Bt N
II - <I,L <|L ~ \
NF A value

(Normal Form)

References : [D3], [B2] Ch.2, 7, [B6] Ch.3, [D1]

Expressions in Haskell

2. Expressions

There are many expressions in Haskell

Expressions

if bthen1else O

X 1 XS

do {x <- get; put x}
= D

(@)}
QD
(@]

l categorizing

References : [B2] Ch.2, [H1] Ch.3

2. Expressions

Expression categories in Haskell

lambda abstraction let expression
4 N\ 4
@ letx=1linx+y
_ J _
conditional case expression do expression

if bthen 1 else O @ do {x <- get; put x}

function application
e N

@ (Jx->x+1)3 1+2

general constructor, literal and some forms variable
4) 4)

>

_ J J
References : [H1] Ch.3, [B2] Ch.2

2. Expressions

Specification is described in Haskell 2010 Language Report

oHas kel

| 2010

Language

Report,

Chapter

ELP —

|
nfirerp —

|

|
l eTp —*

|

|

|

|

|
fexp —
aerp

———————

infirexp : :
infirerp

[context =>] type

lexp qop infizexp
- infizexp
lexp

\ apat; ... apat, —> exp

let decls in exp

if exp [;| then exp [; | else exp
case exp of { alts }

do { stmis }

fexp

(fexp| aexp

guar

qeoTn

literal

(exp)

(exps , ..., exp)

[E-TFI Fovee "3-'1"-}‘?&]

[exp; [, ezps] - . [exps]]

[exp | qualy , ..., qual,]
(infizezp qop)

(gop—y infirexp)

geon { fbindy , ..., fhind, }
QETP{ geon) { ﬂ"indl Foeee ﬂ)iﬂ-dn }

(expression type signature)

(infix operator application)
(prefix negation)

(lambda abstraction, n > 1)
(let expression)
(conditional)

(case expression)

(do expression)

(function application)

(variable)
(genera] constructor}

(parenthesized expression)
(tuple, k£ = 2)

(list, k > 1)

(arithmetic sequence)

(list comprehension, n > 1)
(left section)

(right section)

(labeled construction, n > ()
(labeled update, n > 1)

References : [H1] Ch.3, [B2] Ch.2

Classification by values and forms

2. Expressions

Classification by values

Expressions

unevaluated expressions

Wothen 1 oke 0> :®:C>

values

data values function values

Qo 2xD

N >
23> Caad
D G

D

Values are data values or function values.

References : [H5]

2. Expressions

Classification by forms

Expressions

unevaluated expressions

Wothen 1 oke 0> :®:C>

values
WHNF

HNF C o mabs 1D
GutinD oD CEETTITS

> >
T > —=

D

Values are WHNF, HNF or NF.

References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]

2. Expressions

2. Expressions

WHNF is one of the form in the evaluated values

An expression

exp

(1) normal order reduction
of top - level (head) redexes

WHNF

(Weak Head Normal Form) NP

no top-level redexes

" (2) normal order reduction
of inner level redexes

NF A value
(Normal Form)

no redexes at all

References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]

2. Expressions

WHNF

top-level (head) is
a constructor or
a lambda abstraction

no top-level redex

WHNF is a value which has evaluated top -level

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

2. Expressions

WHNF for a data value and a function value

a data value in WHNF

/7 inner redexes

constructor r A \

no top-level redex

a function value in WHNF

lambda abstraction
\ inner redexes
J Xq.. X, ->

no top-level redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

2. Expressions

Examples of WHNF

Just 7
no top-level redex
WHNF
Just (abs x)
no top-level redex
Cons (f 1) (map f [2..])
no top-level redex
J X -> X+1
no top-level redex
abs 7
no WHNE top level -redex
if X then ' True = else ' False

top level -redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

2. Expressions

HNF

top-level (head) is
a constructor or
a lambda abstraction with\no top -level redex

no top-level redex

HNF is a value which has evaluated top -level

* GHC uses WHNF rather than HNF.

References : [H4] Ch.11, [D3], [B3]

2. Expressions

HNF for a data value and a function value

a data value in HNF (same as WHNF)

/7 iInner redexes

constructor ; A |

no top-level redex

a function value in HNF

lambda abstraction *\j

no redex

References : [H4] Ch.11, [D3], [B3]

2. Expressions

Examples of HNF

Just 7
no top-level redex
HNF
Just (abs x)
no top-level redex
J x-> Just (abs 7)
no top-level redex
abs 7
no HNE top level -redex
J x-> abs 7

top level -redex

References : [H4] Ch.11, [D3], [B3]

2. Expressions

NF

top-level (head) is
a constructor or

a lambda abstraction

J

Y

no internal redex

NF is a value which has no redex.

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

2. Expressions

NF for a data value and a function value

a data value in NF

constructor
L J

Y

no internal redex

a function value in NF

lambda abstraction *\j

\ J
Y

no internal redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

2. Expressions

Examples of NF

Just 7

Y
no internal redex

NF
Cons 1 Nil
\ Y J
no internal redex
J X -> X+ 1
\ Y J
no internal redex
Just (abs 7)
no NE redex
J x-> Just (abs 7)
redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

2. Expressions

WHNF, HNF, NF

top -level (head) is
a constructor or
a lambda abstraction

HRE

no top-level redex

top -level (head) is
a constructor or
a lambda abstraction with no top -level redex

HNF

no top-level redex

NF

\ J
L4

no internal redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

2. Expressions

Definition of WHNF and HNF

0OThe I mplementation of functional progr
11.3.1 Weak Head Normal Form
To express this idea precisely we need to introduce a new definition:
DEFINITION
A lambda expression is in weak head normal form (WHNF) if and only if it
is of the form
FEi1 E2... En
where n = 0;
orma and either Fis a variable or data object
11.3.3 HeadN | Form or F is a lambda abstraction or built-in function
Head normal form is often confused| and (F Eq Ez ... Em)isnotaredex forany m=n.
some discussion. The content of th An expression has no rop-level redex if and only if it is in weak head normal
since for most purposes head norm; o
form. Nevertheless, we will stick to t
DEFINITION

form

and

A lambda expression is in head normal form (HNF) if and only if it is of the

AX1.A%2. . . AXn.(v My M2 ... Mp)

where n, m = 0;
v is a variable (x;), a data object, or a built-in function;
(v My M2 ..

. Mp) is not a redex for any p=m.

References : [H4] Ch.11

3. Internal representation of expressions

Constructor

3. Internal representation of expressions

Constructor

Constructor is one of the key elements
to understand WHNF and lazy evaluation in Haskell.

3. Internal representation of expressions

Constructor
a data value
+
constructor data component s (n O

(data constructor)

A constructor builds a structured data value.
A constructor distinguishes the data value in expressions.

References : [B2], [H1], [H4] Ch.2, 10, [B6] Ch.11

3. Internal representation of expressions

Constructors and data declaration

data component

constructor ‘\ /7

data Maybe a = Nothing

|\ Just a

Constructors are defined by data declaration.

References : [B2], [H1]

3. Internal representation of expressions

Internal representation of Constructors for data values

Haskell code

Nothing J <« - —
Just / 5J <« ==

GHCOs i nternal
header
| Nothing |
header payload

| Just I f I

v

heap memory

repr

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

Constructors are represented uniformly

GHCOs i nternal

representatio

header

payload
A

[..

/

object type
constructor

N\

data components

in heap memory, stack or static memory

A data value is represented with header(constructor) + payload(components).

References : [H11], [H10], [H5], [H6], [H7], [D15]

3. Internal representation of expressions

Representation of various constructors

Haskell code
data Bool =¢ False
| “ True
74
data Maybe a =< Nothing
| ¢ Just)(a
7
data Either a b = Left a
| CRight ' b
7

GHCOs internal

S False

> True

s | Nothing

S Just

S Left

~ | Right

H JE[g

References : [H11], [H10], [H5], [H6], [H7]

reprt

3. Internal representation of expressions

Primitive data types are also represented with constructors

Haskell code GHCOs internal repr
data Int =C1# dnt# < > I# O#
N N
r —— DT |# 1#
boxed integer nboxed integer

data Char =(C# (Char# X e > C# 0ad

heap memory

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

List is also represented with constructors

List
[1,2, 3] J
(syntactic desugar
1:(2:(3:0))]
(prefix notation by section
()1(()2((:)30)) J

f
: equivalent data constructor

\
<

Cons1 (Cons 2 (Cons 3 Nil)) J

———

constructor

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

List is also represented with constructors

List
(1,2 3] J
(syntactic desugar
1:(2:(3:0)) J
(prefix notation by section type declaration
< * pseudo code
() 1()2((:)30)) J data Lista = []
p | ; a ((Lista)
: equivalent data constructor ‘I
\‘ |
v
Cons1 (Cons 2 (Cons 3 Nil)) J <
data Lista = ‘Nil
| (Cons/(a)(Lista)

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

List is also represented with constructors

Haskell code
* pseudo code
data List a =([]
| ; a ((Lista)
V74
f

| .
; equivalent data constructor
\
<

data List a =CNil

| C(Cons ' a

(List a)

7

GHCOs internal

'>| [I

'>| () ‘ f | f I

f

reprt

: a List a

-~

> Nil

> | Cons ‘ f ‘ f I
a List a

heap memory

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

List is also represented with constructors

Haskell code

[1,2,3]

(

1:(2:(3:1]))

(

()10C)20(:)30))
n

I
\
2|

Cons1 (Cons 2 (Cons 3 Nil))

<

GHCOs internal repre
Eons(:l f | i |
1 Eons(:l f | f |
2 ons (:
3

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

Tuple is also represented with constructor

Tuple (Pair)

(7.8)

(prefix notation by section

type declaration

(,)78

* pseudo code

f

] .
1 equivalent data constructor
\
|

data Pair a= ¢ (,) a | a J

Pair 7 8

4= T~

\

constructor

data Pair a= (Pair)(a a J

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

Tuple is also represented with constructor

Haskell code

data Pair a= ¢ (,) a | a

f

| .
; equivalent data constructor
\
<

data Pair a= (Pair’'| a a

GHCOs internal repr
> ()
a a
£
|
|
<
—>| Pair ‘ i ‘ i I
a a

heap memory

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

Tuple is also represented with constructor

Haskell code
(28)]
()78
r 4
)
Pair 7 8 GHCOs internal reprt
' <« |
>
|Pair(,)| 1 | 1 I
7 8

References : [H11], [H10], [H5], [H6], [H7]

3. Internal representation of expressions

3. Internal representation of expressions

Thunk

Haskell code GHCOs i nternal reprt

luated : a thunk
an unevaluatea expression J .
P € — —" - g (an unevaluated expression/

a suspended computation)

heap memory

A thunk is an unevaluated expression in heap memory.
A thunk is built to postpone the evaluation.

References : [B5] Ch.2, [D5], [W1], [H10], [H5], [D7]

3. Internal representation of expressions

Internal representation of a thunk

Haskell code GHCO s

thunk

I nt er nal

An unevaluated expression

paylgad

f/

\

header
@ <— — —. — . — > | info ptr | | I

A thunk is represented with header(code) + payload(free variables).

free variables

References : [H11], [H10], [D2], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]

repr

3. Internal representation of expressions

A thunk is a package

thunk

code free variables

A thunk is a package of code + free variables.

References : [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]

3. Internal representation of expressions

A thunk is evaluated by forcing request

Haskell code GHCOs internal repr

thunk

An unevaluated expression payload

header \
@eny « —|—.> |infoptr | | | I

code free variables
ﬂ evaluate B evaluate
by forcing request by forcing request

<[3]> S NN | cons () | I | I |

An evaluated expression :
P 3 Nil ([])

References : [D7], [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1], [D15]

Uniform representation

3. Internal representation of expressions

Every object is uniformly represented in memory

header

payload
A

[..

,

object type

constructor,
function,
thunk, ...

N\

data components

in heap memory, stack or static memory

References : [H11], [H10], [H5], [H6], [H7], [D15]

3. Internal representation of expressions

Every object is uniformly represented in memory

header piyload

f \

a data value a function value a thunk

References : [H11], [H10], [H5], [H6], [H7], [D15]

3. Internal representation of expressions

Every object is uniformly represented in memory

header

payload
A

f

T T 1-

\

a thunk

a data value a function value
constructor v code o
data components . free variables
{ arguments
stack or
registers

\ J

Y

free variables

* At exactly, a thunk object has
a reserved field in second.

References : [H11], [H10], [H5], [H6], [H7], [D15]

3. Internal representation of expressions

WHNF

3. Internal representation of expressions

Internal representation of WHNF

Haskell code

a data value in WHNF

C ECHECSY S
\ J

A4
constructor data component(s)

a function value in WHNF

Z lambda abstraction

GHCO6s internal r e f

heap memory

constructor exp,

Y) G
T .

\ J

¥
data component(s)

code : Y /
(exp) free variables
—

References : [H11], [H5], [H6], [H7], [H10]

3. Internal representation of expressions

Example of WHNF for a data value

Haskell code

Just (take x [1..]) P—

Y
constructor a redex

an unevaluated expression

Constructors can contain unevaluated expressions by thunks.
Haskell s constructors

GHCO6s internal r e f
I Just l . I
constructor
thunk | l I |
X
take x [1..] J —
free variables
are |l azy const

References : [H11], [H5], [H6], [H7], [H10]

3. Internal representation of expressions

Example of WHNF for a data value

Haskell code
[map f xs]

(syntactic desugar

Cons (map f xs) Nil

A4
constructor a redex

an unevaluated expression

GHCO6s internal r e f

constructor

thunk | | | I

f XS
map f xs \ v—)
free variables

References : [H11], [H5], [H6], [H7], [H10]

let, case expression

3. Internal representation of expressions

let, case expression

let and case expressions are special role in the evaluation

3. Internal representation of expressions

let/case expressions and thunk

force
build thunk (evaluate)
let expression J ———— |(unevaluated expression/ | <—_ | case expreSSionJ
(allocate) suspended computation) extract o
(deconstruct)

A let expression may build a thunk.
A case expression evaluates (forces) and deconstructs the thunk.

References : [H5], [H6], [H7], [H10]

3. Internal representation of expressions

A let expression may allocates a heap object

heap memory

let expression

a data value
let E(_] allocate
= aaass /\
(build) or
74

a function value

or

a thunk
(an unevaluated expression)

A let expression may allocates an object in the heap.

(If GHC can optimize it, the let expression may not allocate.)

* At exactly, STG | anguageds | et expression rather than Has

References : [H5], [H6], [H7], [H10]

3. Internal representation of expressions

Haskell code

Example of let expressions

let x = Justb

allocate
/—\

let x= Jy ->y+z

allocate
/—\

let x = take y ys

allocate
(build)

GHCOs i nternal

a data value

| Just | I
5

a function value

T

Jy->y+j '

free variables

a thunk

y ys

free variables

\ J
take y ys M

References : [H5], [H6], [H7], [H10]

rep

3. Internal representation of expressions

A case expression evaluates a subexpression

heap memory

_ a data value or
case expression (1) pattern -matching drives a function value or

the evaldation —— | a thunk
case x of /

patternl | -> altl

pattern2 |-> alt2

4 ﬂ evaluate

an evaluated value
(a data value or
a function value)

X
[J
\ 4

Pattern -matching drives the evaluation.

* At exactly, STG | anguageds case expression rather than Ha

References : [H5], [H6], [H7], [H10], [D2]

