
Lazy evaluation illustrated
for Haskell divers

Takenobu T.

Rev. 0.01.0

exploring some mental models and implementations

WIP

Lazy,...

..., Itõs fun!

NOTE
- Meaning of terms are different for each community.
- There are a lot of good documents. Please see also references.
- This is written for GHCõs Haskell.

1. Introduction

- Basic mental models

- Lazy evaluation

- Simple questions

2. Expressions

- Expression and value

- Expressions in Haskell

- Classification by values and forms

- WHNF

3. Internal representation of expressions

- Constructor

- Thunk

- Uniform representation

- WHNF

- let, case expression

4. Evaluation

- Evaluation strategies

- Evaluation in Haskell (GHC)

- Examples of evaluation steps

- Examples of evaluations

- Controlling the evaluation

5. Implementation of evaluator

- Lazy graph reduction

- STG-machine

6. Semantics

- Bottom

- Strict/Non -strict

- Lifted and boxed types

- Strictness analysis

- Sequential order

7. Appendix

- References

Contents

1. Introduction

Basic mental models

1. Introduction

How to evaluate a program in your brain ?

a program

code

code

code

:

How to evaluate (execute, reduce) the program in your brain?

What òmental modeló do you have?

1. Introduction

One of the mental models for C program

main (...) {

code..

code..

code..

code..

}

A sequence of statements

How to evaluate (execute, reduce) the program in your brain?

What step, what order, ... ?

x = func1(func2(a));

y = func1(a(x), b(x), c(x));

z = func1(m + n);

A nested structure

A sequence of arguments

A function and arguments

C program

1. Introduction

One of the mental models for C program

main (...) {

code..

code..

code..

code..

}

A program is a collection of statements.

Statements are

executed downward.

x = func1(func2(a));

from inner to outer

y = func1(a(x), b(x), c(x));

from left to right

z = func1(m + n);

arguments first

apply second

Each programmer has some mental models in their brain.

A sequence of statements A nested structure

A sequence of arguments

A function and arguments

C program

1. Introduction

One of the mental models for C program

This is a syntactically straightforward model for programming languages.

Maybe, You have some implicit mental model in your brain for C program.

(1) A program is a collection of statements .

(2) There is the order between evaluations of elements.

(3) There is the order between termination and start of evaluations.

termination

start termination

code..

code..

code..

code..

x = func1(func2(a)); func1(a(x), b(x), c(x)); z = func1(m + n);

code..

code..

func1(func2(a));

start

(an implicit sequential order model)

1. Introduction

One of the mental models for Haskell program

How to evaluate (execute, reduce) the program in your brain?

What step, what order, ... ?

Haskell program

main = expaa (expab expac expad)

expac = expaca expacb

expad = expada expadb expadc

:

1. Introduction

One of the mental models for Haskell program

main = expaa (expab expac expad)

expac = expaca expacb

expad = expada expadb expadc

:

A entire program is regarded as a single expression .

The subexpression is evaluated (reduced) in some order.

The evaluation is performed by replacement.

main

expaa expab expac expad

expada expadb expadcexpaca expacb

Haskell program
A program is a collection of expressions .

main = expaa (expab (expaca expacb) (exp ada expadb expadc))

1. Introduction

One of the mental models for Haskell program

(1) A program is a collection of expressions .

(2) A entire program is regarded as a single expression .

(3) The subexpressions are evaluated (reduced) in some order .

main = e (e (e (e e) e (e e e)))

(4) The evaluation is performed by replacement .

f = e (e (e (e e) e (e e e)))

This is an example of an expression reduction model for Haskell.

1. Introduction

3+2 5

+ 3 2

Lazy evaluation

1. Introduction

To manipulate streames

pure is order free

2nd Church-Rosser theorem

...

fun

reactive

References : [H4], [H3], [B2], [B7], [B8], [D2], [D12], [D13], [D14]

Why lazy evaluation?

To manipulate infinite data structures

To manipulate huge data structures

potentially parallelism

out -of -order optimization

asynchronization

modularity

To implement non-strict semantics

There are various reasons J

To avoid unnecessary computation

abstraction

amortizing

1. Introduction

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]

Haskell(GHC) ôs lazy evaluation

+

evaluate only when needed

evaluate only enough

+

evaluate at most once

need

eval

eval

need

eval

need

no re-eval

Lazy evaluation

òLazyó is òdelay and avoidanceó rather than òdelayó.

1. Introduction

+

+

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]

Ingredient of Haskell(GHC) ôs lazy evaluation

at most once
substitute pointers

update redex root with result

WHNF

evaluate

an expression

a value

only when needed normal order reduction

only enough stop at WHNF

This strategy is implemented by lazy graph reduction.

1. Introduction

References : [B2] Ch.7, [H4] Ch.2, 11, 12, 15, [H5], [D2]

Techniques of Haskell(GHC) ôs lazy evaluation
evaluate

only when needed

evaluate

at most once

evaluate

only enough

self -updating modellazy constructor

normal order reduction
(leftmost outermost reduction)

call-by-need

substitute pointers

full laziness

stop at WHNF

pattern -matching

lazy graph reduction

thunk

update redex root with result

1. Introduction

Simple questions

1. Introduction

References : [H4] Ch.2, 11, [B6] Ch.5

What order?

An expression is evaluated by normal order (leftmost outermost redex first).

exp0 exp1 exp2 expn
...

an expression

To avoid unnecessary computation, normal order reduction chooses to apply the function

rather than first evaluating the argument.

Normal order reduction guarantees to find a normal form (if one exists).

1. Introduction

How to postpone?

To postpone the evaluation, an unevaluated expression is built in the heap memory.

exp0 (exp1 exp2 exp3)

heap memory

exp1 exp2 exp3

Haskell code

an unevaluated expression

build/allocate

References : [H4], [H5]

1. Introduction

thunk

When needed?

Pattern -matching or forcing request drive the evaluation.

heap memory

exp1 exp2 exp3

pattern -matching

an unevaluated expression

evaluation request

case x of

Just _ -> True

Nothing -> False

seq x y

f $! arg

forcing request

x + y

built - in (primitive operation)

References : [H4], [D2], [D5]

1. Introduction

:
:

References : [H4], [D2], [D5]

What to be careful about?

You can avoid the pitfalls by controlling the evaluation.

To consider hidden space leak

To consider performance cost to postpone unevaluated expressions

To consider evaluation (execution) order and timing in real world

heap
memory

heap
memory

build, force,

update, gc, ...

A

B

C

A

B

C

1. Introduction

2. Expressions

Expression and value

2. Expressions

References : [B1] Ch.1, [B2] Ch.2, [B6] Ch.3, [H4] Ch.2

What is an expression?

?

An expression

2. Expressions

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2

An expression denotes a value

1 + 2

An expression

2. Expressions

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2

An expression is evaluated to a value

evaluate

A value

1 + 2

An expression

3

2. Expressions

References : [B2] Ch.2, 7, [B6] Ch.3, [D1]

There are many evaluation approaches

(1 + 2) ^ 2

An expression

A value

9

- Strict, Non -strict evaluation

- Eager, Lazy evaluation

- Call-by-value, Call-by-name,

Call-by-need, é

- Innermost, Outermost

- Normal order, Applicative order

- é

evaluation strategies

2. Expressions

References : [D3], [B2] Ch.2, 7, [B6] Ch.3, [D1]

There are some evaluation levels

WHNF

take 3 [1..]

An expression

A value

[1, 2, 3]

NF

(Weak Head Normal Form)

(Normal Form)

2. Expressions

Expressions in Haskell

2. Expressions

References : [B2] Ch.2, [H1] Ch.3

There are many expressions in Haskell

if b then 1 else 0

Expressions

categorizing

x : xs

case x of _ -> 0

do {x <- get; put x}

Јx -> x + 1

let x = 1 in x + y

fun arg

(Јx -> x + 1) 3

7

ôaõ

take 5 xs

Just 5
1 + 2

[1, 2, 3]

map f xs

(1, 2)

xs

2. Expressions

References : [H1] Ch.3, [B2] Ch.2

Expression categories in Haskell

lambda abstraction let expression

conditional case expression do expression

variable

Јx -> x + 1 let x = 1 in x + y

if b then 1 else 0 case x of _ -> 0 do {x <- get; put x}

general constructor, literal and some forms

7

ôaõ

[1, 2, 3] (1, 2)

x : xs Just 5

function application

take 5 xs

map f xs
fun arg

(Јx -> x + 1) 3 1 + 2

xs

2. Expressions

References : [H1] Ch.3, [B2] Ch.2

Specification is described in Haskell 2010 Language Report

òHaskell 2010 Language Report, Chapter 3 Expressionsó [H1]

2. Expressions

Classification by values and forms

2. Expressions

References : [H5]

Classification by values

data values

Expressions

function values

values

unevaluated expressions

Values are data values or function values.

7

Јx -> x + 1

Just 5

ôaõ

[1, 2, 3] (1, 2)

let x = 1 in x + y

if b then 1 else 0 case x of _ -> 0 do {x <- get; put x}

take 5 xs

map f xs fun arg

(Јx -> x + 1) 3
1 + 2

Just (f x)

bottom

כ

2. Expressions

References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]

Classification by forms

Expressions

Values are WHNF, HNF or NF.

WHNF

HNF Јx -> abs 1

unevaluated expressions

let x = 1 in x + y

if b then 1 else 0 case x of _ -> 0 do {x <- get; put x}

take 5 xs

map f xs fun arg

(Јx -> x + 1) 3
1 + 2

values

bottom

כ

NF

Just 5

ôaõ

[1, 2, 3] (1, 2)

Just (f x)

7

Јx -> x

Јx -> x + (abs 1)[f x, g y]

2. Expressions

WHNF

2. Expressions

References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]

WHNF is one of the form in the evaluated values

WHNF

exp

An expression

A value

NF

NF

(Weak Head Normal Form)

(Normal Form)

(2) normal order reduction

of inner level redexes

no redexes at all

no top-level redexes

(1) normal order reduction

of top - level (head) redexes

2. Expressions

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

WHNF

exp0 exp1 exp2 expn
...

top -level (head) is

a constructor or

a lambda abstraction

no top-level redex

WHNF is a value which has evaluated top -level

2. Expressions

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

WHNF for a data value and a function value

exp0 exp1 exp2 expn
...

constructor

a data value in WHNF
inner redexes

a function value in WHNF

Јx1 .. xn -> exp

lambda abstraction

no top-level redex

inner redexes

no top-level redex

2. Expressions

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

Examples of WHNF

Just (abs x)

Cons (f 1) (map f [2..])

WHNF

no WHNF

Just 7

Јx -> x + 1

if x then elseTrue False

abs 7

no top-level redex

top level -redex

no top-level redex

no top-level redex

no top-level redex

top level -redex

2. Expressions

References : [H4] Ch.11, [D3], [B3]

HNF

exp0 exp1 exp2 expn
...

* GHC uses WHNF rather than HNF.

no top-level redex

top -level (head) is

a constructor or

a lambda abstraction with no top -level redex

HNF is a value which has evaluated top -level

2. Expressions

References : [H4] Ch.11, [D3], [B3]

HNF for a data value and a function value

exp0 exp1 exp2 expn
...

constructor

a data value in HNF
inner redexes

a function value in HNF

Јx1 .. xn ->

lambda abstraction

(same as WHNF)

exp0 exp1 expn
...

no redex

no top-level redex

2. Expressions

References : [H4] Ch.11, [D3], [B3]

Examples of HNF

Just (abs x)
HNF

no HNF

Just 7

abs 7

no top-level redex

top level -redex

no top-level redex

Јx -> (abs 7)Just

no top-level redex

Јx -> abs 7

top level -redex

2. Expressions

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

NF

exp0 exp1 exp2 expn
...

no internal redex

top -level (head) is

a constructor or

a lambda abstraction

NF is a value which has no redex.

2. Expressions

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

NF for a data value and a function value

exp0 exp1 exp2 expn
...

constructor

a data value in NF

a function value in NF

Јx1 .. xn ->

lambda abstraction

exp0 exp1 expn
...

no internal redex

no internal redex

2. Expressions

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

Examples of NF

Cons 1

NF

no NF

Just 7

Јx -> x + 1

no internal redex

Јx ->

Nil

no internal redex

no internal redex

Just (abs 7)

redex

(abs 7)Just

redex

2. Expressions

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

WHNF, HNF, NF

exp0 exp1 exp2 expn
...

exp0 exp1 exp2 expn
...

exp0 exp1 exp2 expn
...WHNF

HNF

NF

no top-level redex

no top-level redex

no internal redex

top -level (head) is

a constructor or

a lambda abstraction with no top -level redex

top -level (head) is

a constructor or

a lambda abstraction

2. Expressions

References : [H4] Ch.11

Definition of WHNF and HNF

òThe implementation of functional programming languagesó [H4]

2. Expressions

3. Internal representation of expressions

Constructor

3. Internal representation of expressions

Constructor

Constructor is one of the key elements

to understand WHNF and lazy evaluation in Haskell.

3. Internal representation of expressions

Constructor

exp0 exp1 exp2 expn
...

constructor

A constructor builds a structured data value.

a data value

+

data components (n Ó 0)
(data constructor)

A constructor distinguishes the data value in expressions.

3. Internal representation of expressions

References : [B2], [H1], [H4] Ch.2, 10, [B6] Ch.11

Constructors and data declaration

data Maybe a = Nothing

| Just a

constructor data component

Constructors are defined by data declaration.

3. Internal representation of expressions

References : [B2], [H1]

Just

References : [H11], [H10], [H5], [H6], [H7]

Internal representation of Constructors for data values

Nothing

Just 7

Haskell code GHCõs internal representation

Nothing

header

header payload

7

heap memory

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7], [D15]

Constructors are represented uniformly

header
payload

...

in heap memory, stack or static memory

object type data components

constructor ,

function,

thunk, ...

GHCõs internal representation

A data value is represented with header(constructor) + payload(components).

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7]

Representation of various constructors

data Bool = False

| True

data Maybe a = Nothing

| Just a

data Either a b = Left a

| Right b

Just

Nothing

a

False

True

Left

a

Right

b

Haskell code GHCõs internal representation

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7]

Primitive data types are also represented with constructors

Haskell code

I# 0#

I# 1#

:

GHCõs internal representation

C# ôaõ#

C# ôbõ#

:

data Int = I# Int#

data Char = C# Char#

heap memory

1 :: Int

ôaõ :: Char

3. Internal representation of expressions

boxed integer unboxed integer

List is also represented with constructors

[1, 2, 3]

syntactic desugar

1 : (2 : (3 : []))

(:) 1 ((:) 2 ((:) 3 []))

List

prefix notation by section

Cons1 (Cons 2 (Cons 3 Nil))

equivalent data constructor

constructor

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7]

List is also represented with constructors

[1, 2, 3]

syntactic desugar

1 : (2 : (3 : []))

(:) 1 ((:) 2 ((:) 3 []))

List

prefix notation by section

Cons1 (Cons 2 (Cons 3 Nil))

equivalent data constructor

* pseudo code

type declaration

data List a = Nil

| Cons a (List a)

data List a = []

| : a (List a)

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7]

References : [H11], [H10], [H5], [H6], [H7]

List is also represented with constructors

(:)

[]

Haskell code GHCõs internal representation

a List a

Cons

Nil

a List a

data List a = Nil

| Cons a (List a)

data List a = []

| : a (List a)

heap memory

* pseudo code

3. Internal representation of expressions

equivalent data constructor

References : [H11], [H10], [H5], [H6], [H7]

List is also represented with constructors

[1, 2, 3]

1 : (2 : (3 : []))

(:) 1 ((:) 2 ((:) 3 []))

Cons1 (Cons 2 (Cons 3 Nil))

Haskell code

GHCõs internal representation

1

Cons (:)

2

Cons (:)

3

Cons (:)

Nil ([])

3. Internal representation of expressions

type declaration

Tuple is also represented with constructor

(7, 8)

(,) 7 8

Tuple (Pair)

prefix notation by section

Pair 7 8

equivalent data constructor

data Pair a = (,) a a

data Pair a = Pair a a

* pseudo code

constructor

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7]

References : [H11], [H10], [H5], [H6], [H7]

Tuple is also represented with constructor

(,)

Haskell code GHCõs internal representation

a a

Pair

a a

data Pair a = Pair a a

data Pair a = (,) a a

heap memory

3. Internal representation of expressions

equivalent data constructor

References : [H11], [H10], [H5], [H6], [H7]

Tuple is also represented with constructor

(7, 8)

(,) 7 8

Pair 7 8

7

Pair (,)

8

Haskell code

GHCõs internal representation

3. Internal representation of expressions

Thunk

3. Internal representation of expressions

a thunk
(an unevaluated expression/

a suspended computation)

References : [B5] Ch.2, [D5], [W1], [H10], [H5], [D7]

Thunk

A thunk is an unevaluated expression in heap memory.

A thunk is built to postpone the evaluation.

Haskell code GHCõs internal representation

an unevaluated expression

heap memory

3. Internal representation of expressions

References : [H11], [H10], [D2], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]

Internal representation of a thunk

An unevaluated expression
header

payload

y ys

thunk

info ptr

take y ys

code free variables

A thunk is represented with header(code) + payload(free variables).

Haskell code GHCõs internal representation

take y ys

3. Internal representation of expressions

thunk

References : [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]

A thunk is a package

info ptr

header
payload

y ys
take y ys

code free variables

A thunk is a package of code + free variables.

3. Internal representation of expressions

References : [D7], [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1], [D15]

A thunk is evaluated by forcing request

Haskell code GHCõs internal representation

An unevaluated expression
header

payload

y ys

thunk

info ptr

take y ys

code free variables

take y ys

[3]

An evaluated expression

evaluate
by forcing request

Cons (:)

3 Nil ([])

evaluate
by forcing request

3. Internal representation of expressions

Uniform representation

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7], [D15]

Every object is uniformly represented in memory

header
payload

...

in heap memory, stack or static memory

object type data components

constructor,

function,

thunk, ...

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7], [D15]

Every object is uniformly represented in memory

a thunka data value a function value

header payload

...

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7], [D15]

Every object is uniformly represented in memory

header payload

...

code
free variables

info ptrinfo ptrinfo ptr

a thunka data value a function value

code
free variables

stack or

registers

arguments

data components
constructor

3. Internal representation of expressions

* At exactly, a thunk object has

a reserved field in second.

WHNF

3. Internal representation of expressions

References : [H11], [H5], [H6], [H7], [H10]

Internal representation of WHNF

exp0 exp1 expn
...

constructor

a data value in WHNF

a function value in WHNF

Јx1 .. xn -> exp

lambda abstraction

info ptr

constructor

data component(s)

heap memory

info ptr

code

(exp) free variables

info ptr

...

info ptr

data component(s)

exp1

exp2

Haskell code GHCõs internal representation

3. Internal representation of expressions

References : [H11], [H5], [H6], [H7], [H10]

Example of WHNF for a data value

Just (take x [1..])

constructor

Just

constructor

a redex

an unevaluated expression

Haskell code GHCõs internal representation

info ptr

take x [1..]
x

thunk

free variables

Constructors can contain unevaluated expressions by thunks.

Haskellõs constructors are lazy constructors.

3. Internal representation of expressions

References : [H11], [H5], [H6], [H7], [H10]

Example of WHNF for a data value

Cons (map f xs)

constructor

Cons

constructor

Haskell code GHCõs internal representation

info ptr

map f xs
f

thunk

free variables

Nil

[map f xs]

syntactic desugar

xs

Nil
a redex

an unevaluated expression

3. Internal representation of expressions

let, case expression

3. Internal representation of expressions

let, case expression

let and case expressions are special role in the evaluation

3. Internal representation of expressions

References : [H5], [H6], [H7], [H10]

let/case expressions and thunk

thunk
(unevaluated expression/

suspended computation)

let expression case expression
(allocate)

build

force

(evaluate)

extract

(deconstruct)

A let expression may build a thunk.

A case expression evaluates (forces) and deconstructs the thunk.

3. Internal representation of expressions

References : [H5], [H6], [H7], [H10]

A let expression may allocates a heap object

let x =
(build)

allocate

heap memory

let expression

a thunk

(an unevaluated expression)

a function value

a data value

or

or

* At exactly, STG languageõs let expression rather than Haskellõs let expression

A let expression may allocates an object in the heap.
(If GHC can optimize it, the let expression may not allocate.)

3. Internal representation of expressions

References : [H5], [H6], [H7], [H10]

Example of let expressions

let x = Just 5

(build)

allocate

let x = Јy -> y + z

let x = take y ys

Just

5

info ptr

Јy -> y + z
free variables

z

info ptr

take y ys
free variables

y

allocate

allocate

Haskell code GHCõs internal representation

ys

a data value

a function value

a thunk

3. Internal representation of expressions

References : [H5], [H6], [H7], [H10], [D2]

A case expression evaluates a subexpression

case x of

pattern1 -> alt1

pattern2 -> alt2

heap memory

case expression
a data value or

a function value or

a thunk

* At exactly, STG languageõs case expression rather than Haskellõs case expression

Pattern -matching drives the evaluation.

x

x

(1) pattern -matching drives

the evaluation

an evaluated value

(a data value or

a function value)

3. Internal representation of expressions

evaluate

