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NOTE
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- There are a lot of good documents. Please see also references.
-This 1 s written for GHCOs Haske
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Basic mental models



1. Introduction

How to evaluate a program in your brain ?

a program

code
code
code

How to evaluate (execute, reduce) the program in your brain?

Wh a tmerdal model6 do you have?



1. Introduction

C program

A sequence of statements

One of the mental models for C program

A nested structure

}

main (...) {
code.. |
code..
code..
code..

>

x = funcl(func2(a));

A sequence of arguments

y = funcl( a(x), b(x), c(x));

A function and arguments

z=funcl(m+n);

How to evaluate (execute, reduce) the program in your brain?

What step, what order, ... ?



1. Introduction

One of the mental models for C program

C program A program is a collection of statements.
A sequence c/y/st:tements A nested structure

maiy/(...) { x = funcl(func2(a));
code.. « _
code.. “— from inner to outer
code..

A sequence of arguments

code.. |

} \ p y = funcl(a(x), b(x), c(x)):

\— Statements are K ’
executed downward. from left to right

A function and arguments

z=funcl(m+n);

-
<

I\
\__ arguments first
apply second

Each programmer has some mental models in their brain.
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One of the mental models for C program

Maybe, You have some implicit mental model in your brain for C program.

(1) A program is a collection of statements

(2) There is the order between evaluations of elements.

l

(3) There isthe order between termination and start of evaluations.

terrrlination

star'tl

This is a syntactically straightforward
(an implicit sequential order model)

»

start | terminatipn
R/

model for programming languages.
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One of the mental models for Haskell program

Haskell program

main = exp,, (eXp,p €XPac €XPaqg )

eXpac = eXpaca eXpacb

eXpad = eXpada eXpadb eXpadc

How to evaluate (execute, reduce) the program in your brain?
What step, what order, ... ?



1. Introduction

One of the mental models for Haskell program

Haskell program : : .
L A program is a collection of expressions .
v

main = exp,, (exp,, €XPyc €XPyq)
eXPye = ©XPgea ach
€XPad = €XPada €XPadb €XPadc 3 @
| %
r——
main = eX_FLaa(eXpab (EXP aca €XPach ) (EXP aga €XPadb €XPadc) )

\— A entire program is regarded as a single expression.

\ The subexpression is evaluated (reduced) in some order.

\ The evaluation is performed by replacement.



1. Introduction

One of the mental models for Haskell program

(1) A program is a collection of expressions .

(2) A entire program is regarded as  a single expression.

main=e(e(e(ee)e(eee)))J %}

(3) The subexpressions are evaluated (reduced) in some order.

f=e(e(e(ee)e(eee))) %

o
»

(4) The evaluation is performed by replacement.

GO GHC2o E:) 3

This is an example of an expression reduction model for Haskell.
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1. Introduction

Why lazy evaluation?

To manipulate infinite data structures ]

To avoid unnecessary computation J )

To manipulate streames
modularity ] _—

J

- pure is order free }
abstraction

To manipulate huge data structures ]

amortizing ]

potentially parallelism 2nd Church -Rosser theorem ]

/

To implement non-strict semantics ]

f—

)

out-of -order optimization (

f

V4

—

fun

asynchronization

i

reactive

There are various reasons J
References : [H4], [H3], [B2], [B7], [B8], [D2], [D12], [D13], [D14]



1. Introduction

Haskell (GHC) 0s | azy &eve

Lazy evaluation

4 N\
eval

evaluate only when needed need

+

eval

evaluate only enough {;&;) L

+
evaluate at most once

0 L azydelayiard agidance6 r at her t han odel ayod.

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]



1. Introduction

| ngredient of

only when needed.

normal order reduction

Haskel |l ( GHC)

an expression

evaluate

\
+
only enough J stop at WHNF
\
+

at most once

substitute pointers
update redex root with result

\

J

a value

This strategy is implemented by lazy graph reduction.

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]



1. Introduction
Techniqgues of Haskell ( GHC)

evaluate

only when needed

normal order reduction
(leftmost outermost reduction)

pattern -matching call-by-need

lazy graph reduction

substitute pointars

update redex root/with result

stop at WHNF

self -updating mode

lazy constructor

full laziness
evaluate

at most once

evaluate
only enough

References : [B2] Ch.7, [H4] Ch.2, 11, 12, 15, [H5], [D2]
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What order?

an expression

0 ]
.
>

An expression is evaluated by normal order (leftmost outermost redex first).

Normal order reduction guarantees to find a normal form (if one exists).

To avoid unnecessary computation, normal order reduction chooses to apply the function
rather than first evaluating the argument.

References : [H4] Ch.2, 11, [B6] Ch.5
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How to postpone?

heap memory

Haskell code

| an unevaluated expression

expy (exp; exp, exps ) — | build/allocate \

thunk

To postpone the evaluation, an unevaluated expression is built in the heap memory.

References : [H4], [H5]
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When needed?

heap memory

pattern -matching

case Xx of

- an unevaluated expression
Just _ |->True T
Nothing

\
-> False :
evaluation request €XP; EeXpP, €XP3

7 /

built -in (primitive operation) 72

X +Yy

forcing request

/
seq Xy

f $! arg

Pattern -matching or forcing request drive the evaluation.

References : [H4], [D2], [D5]
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What to be careful about?

To consider hidden space leak y
L.

]
<:§>g rr;1eean2 ory

To consider performance cost to postpone unevaluated expressions

L.

/_>©
build, force, /‘> > heap
update, gc, ... ¥ memaory

To consider evaluation (execution) order and timing in real world

A — W A —
— —
—

N\
J

B
C C

You can avoid the pitfalls by controlling the evaluation.

References : [H4], [D2], [D5]
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Expression and value



2. Expressions

What is an expression?

An expression

References : [B1] Ch.1, [B2] Ch.2, [B6] Ch.3, [H4] Ch.2



2. Expressions

An expression denotes a value

An expression

T

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2



2. Expressions

An expression is evaluated to a value

An expression

evaluate

>

A value

References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2



2. Expressions

There are many evaluation approaches

An expression

evaluation strateqgies
x - Strict, Non -strict evaluation
- Eager, Lazy evaluation
- Call-by-value, Callby-name,

Cal-by-need, &

- Innermost, Outermost
9 - Normal order, Applicative order
- é

A value

References : [B2] Ch.2, 7, [B6] Ch.3, [D1]



2. Expressions

There are some evaluation levels

An expression

take 3 [1..]
WHNF /,/"" | i:___‘_ Ll T .
(Weak Head Normal Form) Ny s e T | Bt N
II - <I,L <|L ~ \
NF A value

(Normal Form)

References : [D3], [B2] Ch.2, 7, [B6] Ch.3, [D1]
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2. Expressions

There are many expressions in Haskell

Expressions

if bthen1else O

X 1 XS

do {x <- get; put x}
= D

(@)}
QD
(@]

l categorizing

References : [B2] Ch.2, [H1] Ch.3



2. Expressions

Expression categories in Haskell

lambda abstraction let expression
4 N\ 4
@ letx=1linx+y
\_ J \_
conditional case expression do expression

if bthen 1 else O @ do {x <- get; put x}

function application
e N

@ (Jx->x+1)3 1+2

general constructor, literal and some forms variable
4 ) 4 )

>

\_ J J
References : [H1] Ch.3, [B2] Ch.2




2. Expressions

Specification is described in Haskell 2010 Language Report

oHas kel

| 2010

Language

Report,

Chapter

ELP —

|
nfirerp —

|

|
l eTp —*

|

|

|

|

|
fexp —
aerp

———————

infirexp : :
infirerp

[context =>] type

lexp qop infizexp
- infizexp
lexp

\ apat; ... apat, —> exp

let decls in exp

if exp [;| then exp [; | else exp
case exp of { alts }

do { stmis }

fexp

(fexp| aexp

guar

qeoTn

literal

(exp)

(exps , ..., exp )

[E-TFI Fovee "3-'1"-}‘?&]

[ exp; [, ezps] - . [exps] ]

[ exp | qualy , ..., qual, ]
( infizezp qop )

( gop—y infirexp )

geon { fbindy , ..., fhind, }
QETP{ geon) { ﬂ"indl Foeee ﬂ)iﬂ-dn }

(expression type signature)

(infix operator application)
(prefix negation)

(lambda abstraction, n > 1)
(let expression)
(conditional )

(case expression)

(do expression)

(function application)

(variable)
(genera] constructor}

(parenthesized expression)
(tuple, k£ = 2)

(list, k > 1)

(arithmetic sequence )

(list comprehension, n > 1)
(left section)

(right section)

(labeled construction, n > ()
(labeled update, n > 1)

References : [H1] Ch.3, [B2] Ch.2
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2. Expressions

Classification by values

Expressions

unevaluated expressions

Wothen 1 oke 0> :®:C>

values

data values function values

Qo 2xD

N >
23> Caad
D G

D

Values are data values or function values.

References : [H5]



2. Expressions

Classification by forms

Expressions

unevaluated expressions

Wothen 1 oke 0> :®:C>

values
WHNF

HNF C o mabs 1D
GutinD oD CEETTITS

> >
T > —=

D

Values are WHNF, HNF or NF.

References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]
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2. Expressions

WHNF is one of the form in the evaluated values

An expression

exp

(1) normal order reduction
of top - level (head) redexes

WHNF

(Weak Head Normal Form) NP

no top-level redexes

" (2) normal order reduction
of inner level redexes

NF A value
(Normal Form)

no redexes at all

References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]



2. Expressions

WHNF

top-level (head) is
a constructor or
a lambda abstraction

no top-level redex

WHNF is a value which has evaluated top -level

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

WHNF for a data value and a function value

a data value in WHNF

/7 inner redexes

constructor r A \

no top-level redex

a function value in WHNF

lambda abstraction
\ inner redexes
J Xq.. X, ->

no top-level redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

Examples of WHNF

Just 7
no top-level redex
WHNF
Just (abs x)
no top-level redex
Cons (f 1) (map f [2..])
no top-level redex
J X -> X+1
no top-level redex
abs 7
no WHNE top level -redex
if X then ' True = else ' False

top level -redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

HNF

top-level (head) is
a constructor or
a lambda abstraction with\no top -level redex

no top-level redex

HNF is a value which has evaluated top -level

* GHC uses WHNF rather than HNF.

References : [H4] Ch.11, [D3], [B3]



2. Expressions

HNF for a data value and a function value

a data value in HNF (same as WHNF)

/7 iInner redexes

constructor ; A |

no top-level redex

a function value in HNF

lambda abstraction *\j

no redex

References : [H4] Ch.11, [D3], [B3]



2. Expressions

Examples of HNF

Just 7
no top-level redex
HNF
Just (abs x)
no top-level redex
J x-> Just (abs 7)
no top-level redex
abs 7
no HNE top level -redex
J x-> abs 7

top level -redex

References : [H4] Ch.11, [D3], [B3]



2. Expressions

NF

top-level (head) is
a constructor or

a lambda abstraction

J

Y

no internal redex

NF is a value which has no redex.

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

NF for a data value and a function value

a data value in NF

constructor
L J

Y

no internal redex

a function value in NF

lambda abstraction *\j

\ J
Y

no internal redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

Examples of NF

Just 7

Y
no internal redex

NF
Cons 1 Nil
\ Y J
no internal redex
J X -> X+ 1
\ Y J
no internal redex
Just (abs 7)
no NE redex
J x-> Just (abs 7)
redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

WHNF, HNF, NF

top -level (head) is
a constructor or
a lambda abstraction

HRE

no top-level redex

top -level (head) is
a constructor or
a lambda abstraction with no top -level redex

HNF

no top-level redex

NF

\ J
L4

no internal redex

References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]



2. Expressions

Definition of WHNF and HNF

0OThe I mplementation of functional progr
11.3.1 Weak Head Normal Form
To express this idea precisely we need to introduce a new definition:
DEFINITION
A lambda expression is in weak head normal form (WHNF) if and only if it
is of the form
FEi1 E2... En
where n = 0;
orma and either Fis a variable or data object
11.3.3 HeadN | Form or F is a lambda abstraction or built-in function
Head normal form is often confused| and (F Eq Ez ... Em)isnotaredex forany m=n.
some discussion. The content of th An expression has no rop-level redex if and only if it is in weak head normal
since for most purposes head norm; o
form. Nevertheless, we will stick to t
DEFINITION

form

and

A lambda expression is in head normal form (HNF) if and only if it is of the

AX1.A%2. . . AXn.(v My M2 ... Mp)

where n, m = 0;
v is a variable (x;), a data object, or a built-in function;
(v My M2 ..

. Mp) is not a redex for any p=m.

References : [H4] Ch.11
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Constructor



3. Internal representation of expressions

Constructor

Constructor is one of the key elements
to understand WHNF and lazy evaluation in Haskell.



3. Internal representation of expressions

Constructor
a data value
+
constructor data component s (n O

(data constructor)

A constructor builds a structured data value.
A constructor distinguishes the data value in expressions.

References : [B2], [H1], [H4] Ch.2, 10, [B6] Ch.11



3. Internal representation of expressions

Constructors and data declaration

data component

constructor ‘\ /7

data Maybe a = Nothing

|\ Just a

Constructors are defined by data declaration.

References : [B2], [H1]



3. Internal representation of expressions

Internal representation of Constructors for data values

Haskell code

Nothing J <« - —
Just / 5J <« ==

GHCOs i nternal
header
| Nothing |
header payload

| Just I f I

v

heap memory

repr

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

Constructors are represented uniformly

GHCOs i nternal

representatio

header

payload
A

[ ..

/

object type
constructor

N\

data components

in heap memory, stack or static memory

A data value is represented with header(constructor) + payload(components).

References : [H11], [H10], [H5], [H6], [H7], [D15]



3. Internal representation of expressions

Representation of various constructors

Haskell code
data Bool =¢ False
| “ True
74
data Maybe a =< Nothing
| ¢ Just )(a
7
data Either a b = Left a
| CRight ' b
7

GHCOs internal

S False

> True

s | Nothing

S Just

S Left

~ | Right

H JE[ g

References : [H11], [H10], [H5], [H6], [H7]

reprt




3. Internal representation of expressions

Primitive data types are also represented with constructors

Haskell code GHCOs internal repr
data Int =C1# dnt# < > I# O#
N N
r —— DT |# 1#
boxed integer nboxed integer

data Char =( C#  (Char# X e > C# 0ad

heap memory

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

List is also represented with constructors

List
[1,2, 3] J
( syntactic desugar
1:(2:(3:0)) ]
( prefix notation by section
()1(()2((:)30)) J

f
: equivalent data constructor

\
<

Cons1 (Cons 2 (Cons 3 Nil)) J

———

constructor

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

List is also represented with constructors

List
(1,2 3] J
( syntactic desugar
1:(2:(3:0)) J
( prefix notation by section type declaration
< * pseudo code
() 1()2((:)30)) J data Lista = []
p | ; a ((Lista)
: equivalent data constructor ‘I
\‘ |
v
Cons1 (Cons 2 (Cons 3 Nil)) J <
data Lista = ‘Nil
| (Cons/(a )(Lista)

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

List is also represented with constructors

Haskell code
* pseudo code
data List a =( []
| ; a ((Lista)
V74
f

| .
; equivalent data constructor
\
<

data List a =CNil

| C(Cons ' a

(List a)

7

GHCOs internal

'>| [ I

'>| () ‘ f | f I

f

reprt

: a List a

-~

> Nil

> | Cons ‘ f ‘ f I
a List a

heap memory

References : [H11], [H10], [H5], [H6], [H7]




3. Internal representation of expressions

List is also represented with constructors

Haskell code

[1,2,3]

(

1:(2:(3:1]))

(

()10C)20(:)30))
n

I
\
2|

Cons1 (Cons 2 (Cons 3 Nil))

<

GHCOs internal repre
Eons(:l f | i |
1 Eons(:l f | f |
2 ons (:
3

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

Tuple is also represented with constructor

Tuple (Pair)

(7.8)

( prefix notation by section

type declaration

(,)78

* pseudo code

f

] .
1 equivalent data constructor
\
|

data Pair a= ¢ (,) a | a J

Pair 7 8

4= T~

\

constructor

data Pair a= ( Pair)( a a J

References : [H11], [H10], [H5], [H6], [H7]




3. Internal representation of expressions

Tuple is also represented with constructor

Haskell code

data Pair a= ¢ (,) a | a

f

| .
; equivalent data constructor
\
<

data Pair a= ( Pair’'| a a

GHCOs internal repr
> ()
a a
£
|
|
<
—>| Pair ‘ i ‘ i I
a a

heap memory

References : [H11], [H10], [H5], [H6], [H7]



3. Internal representation of expressions

Tuple is also represented with constructor

Haskell code
(28) ]
()78
r 4
)
Pair 7 8 GHCOs internal reprt
' <« |
>
|Pair(,)| 1 | 1 I
7 8

References : [H11], [H10], [H5], [H6], [H7]
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3. Internal representation of expressions

Thunk

Haskell code GHCOs i nternal reprt

luated : a thunk
an unevaluatea expression J .
P € — —" - g (an unevaluated expression/

a suspended computation)

heap memory

A thunk is an unevaluated expression in heap memory.
A thunk is built to  postpone the evaluation.

References : [B5] Ch.2, [D5], [W1], [H10], [H5], [D7]



3. Internal representation of expressions

Internal representation of a thunk

Haskell code GHCO s

thunk

I nt er nal

An unevaluated expression

paylgad

f/

\

header
@ <— — —. — . — > | info ptr | | I

A thunk is represented with header(code) + payload(free variables).

free variables

References : [H11], [H10], [D2], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]

repr



3. Internal representation of expressions

A thunk is a package

thunk

code free variables

A thunk is a package of code + free variables.

References : [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]



3. Internal representation of expressions

A thunk is evaluated by forcing request

Haskell code GHCOs internal repr

thunk

An unevaluated expression payload

header \
@eny « —|—.> |infoptr | | | I

code free variables
ﬂ evaluate B evaluate
by forcing request by forcing request

<[3]> S NN | cons () | I | I |

An evaluated expression :
P 3 Nil ([])

References : [D7], [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1], [D15]



Uniform representation



3. Internal representation of expressions

Every object is uniformly represented in memory

header

payload
A

[ ..

,

object type

constructor,
function,
thunk, ...

N\

data components

in heap memory, stack or static memory

References : [H11], [H10], [H5], [H6], [H7], [D15]



3. Internal representation of expressions

Every object is uniformly represented in memory

header piyload

f \

a data value a function value a thunk

References : [H11], [H10], [H5], [H6], [H7], [D15]



3. Internal representation of expressions

Every object is uniformly represented in memory

header

payload
A

f

T T 1-

\

a thunk

a data value a function value
constructor v code o
data components . free variables
{ arguments
stack or
registers

\ J

Y

free variables

* At exactly, a thunk object has
a reserved field in second.

References : [H11], [H10], [H5], [H6], [H7], [D15]



3. Internal representation of expressions

WHNF




3. Internal representation of expressions

Internal representation of WHNF

Haskell code

a data value in WHNF

C ECHECSY S
\ J

A4
constructor data component(s)

a function value in WHNF

Z lambda abstraction

GHCO6s internal r e f

heap memory

constructor exp,

Y ) G
T .

\ J

¥
data component(s)

code : Y /
(exp) free variables
—

References : [H11], [H5], [H6], [H7], [H10]



3. Internal representation of expressions

Example of WHNF for a data value

Haskell code

Just (take x [1..]) P—

Y
constructor a redex

an unevaluated expression

Constructors can contain unevaluated expressions by thunks.
Haskell s constructors

GHCO6s internal r e f
I Just l . I
constructor
thunk | l I |
X
take x [1..] J —
free variables
are |l azy const

References : [H11], [H5], [H6], [H7], [H10]



3. Internal representation of expressions

Example of WHNF for a data value

Haskell code
[ map f xs ]

( syntactic desugar

Cons (map f xs) Nil

A4
constructor a redex

an unevaluated expression

GHCO6s internal r e f

constructor

thunk | | | I

f XS
map f xs \ v— )
free variables

References : [H11], [H5], [H6], [H7], [H10]
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3. Internal representation of expressions

let, case expression

let and case expressions are special role in the evaluation



3. Internal representation of expressions

let/case expressions and thunk

force
build thunk (evaluate)
let expression J ———— |(unevaluated expression/ | <—_ | case expreSSionJ
(allocate) suspended computation) extract o
(deconstruct)

A let expression may build a thunk.
A case expression evaluates (forces) and deconstructs the thunk.

References : [H5], [H6], [H7], [H10]



3. Internal representation of expressions

A let expression may allocates a heap object

heap memory

let expression

a data value
let E(_ ] allocate
= aaass /\
(build) or
74

a function value

or

a thunk
(an unevaluated expression)

A let expression may allocates an object in the heap.

(If GHC can optimize it, the let expression may not allocate.)

* At exactly, STG | anguageds | et expression rather than Has

References : [H5], [H6], [H7], [H10]



3. Internal representation of expressions

Haskell code

Example of let expressions

let x = Justb

allocate
/—\

let x= Jy ->y+z

allocate
/—\

let x = take y ys

allocate
(build)

GHCOs i nternal

a data value

| Just | I
5

a function value

T

Jy->y+j '

free variables

a thunk

y ys

free variables

\ J
take y ys M

References : [H5], [H6], [H7], [H10]

rep



3. Internal representation of expressions

A case expression evaluates a subexpression

heap memory

_ a data value or
case expression (1) pattern -matching drives a function value or

the evaldation —— | a thunk
case x of /

patternl | -> altl

pattern2 |-> alt2

4 ﬂ evaluate

an evaluated value
(a data value or
a function value)

X
[ J
\ 4

Pattern -matching drives the evaluation.

* At exactly, STG | anguageds case expression rather than Ha

References : [H5], [H6], [H7], [H10], [D2]

















































































































































































































































































































































































