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Lazy,...

..., It’s fun!



NOTE
- Meaning of terms are different for each community.
- There are a lot of good documents. Please see also references.
- This is written for GHC’s Haskell.
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Basic mental models
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How to evaluate a program in your brain ?

a program

code

code

code

:

How to evaluate (execute, reduce) the program in your brain?

What “mental model” do you have?

？
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One of the mental models for C program

main (...) {

code..

code..

code..

code..

}

？

A sequence of statements

How to evaluate (execute, reduce) the program in your brain?

What step, what order, ... ?

x = func1( func2( a ) );

y = func1( a(x),  b(x),  c(x) );

z = func1( m + n );

A nested structure

A sequence of arguments

A function and arguments

？

？

？

C program
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One of the mental models for C program

main (...) {

code..

code..

code..

code..

}

A program is a collection of statements.

Statements are 

executed downward.

x = func1( func2( a ) );

from inner to outer

y = func1( a(x),  b(x),  c(x) );

from left to right

z = func1( m + n );

arguments first

apply second

Each programmer has some mental models in their brain.

A sequence of statements A nested structure

A sequence of arguments

A function and arguments

C program

1. Introduction



One of the mental models for C program

This is a syntactically straightforward model for programming languages.

Maybe, You have some implicit mental model in your brain for C program.

(1) A program is a collection of statements.

(2) There is the order between evaluations of elements.

(3) There is the order between termination and start of evaluations.

termination

start termination

code..

code..

code..

code..

x = func1( func2( a ) ); func1( a(x),  b(x),  c(x) ); z = func1( m + n );

code..

code..

func1( func2( a ) );

start

(an implicit sequential order model)
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One of the mental models for Haskell program

How to evaluate (execute, reduce) the program in your brain?

What step, what order, ... ?

Haskell program

main  =  expaa (expab expac expad )

expac =  expaca expacb

expad =  expada expadb expadc

:

？
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One of the mental models for Haskell program

main  =  expaa (expab expac expad )

expac =  expaca expacb

expad =  expada expadb expadc

:

A entire program is regarded as a single expression.

The subexpression is evaluated (reduced) in some order.

The evaluation is performed by replacement.

main

expaa expab expac expad

expada expadb expadcexpaca expacb

Haskell program
A program is a collection of expressions.

main  =  expaa (expab (expaca expacb ) (expada expadb expadc) )

1. Introduction



One of the mental models for Haskell program

(1) A program is a collection of expressions.

(2) A entire program is regarded as a single expression.

(3) The subexpressions are evaluated (reduced) in some order.

main = e (e (e (e e) e (e e e) ) )

(4) The evaluation is performed by replacement.

f = e (e (e (e e) e (e e e) ) )

This is an example of an expression reduction model for Haskell.

1. Introduction
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Lazy evaluation
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To manipulate streames

pure is order free

2nd Church-Rosser theorem

...

fun

reactive

References : [H4], [H3], [B2], [B7], [B8], [D2], [D12], [D13], [D14]

Why lazy evaluation?

To manipulate infinite data structures

To manipulate huge data structures

potentially parallelism

out-of-order optimization

asynchronization

modularity

To implement non-strict semantics

There are various reasons 

To avoid unnecessary computation

abstraction

amortizing

1. Introduction



References : [B2] Ch.7, [H4] Ch.11, 12, [D2]

Haskell(GHC) ‘s lazy evaluation

+

evaluate only when needed

evaluate only enough

+

evaluate at most once

need

eval

eval

need

eval

need

no  re-eval

Lazy evaluation

“Lazy” is “delay and avoidance” rather than “delay”. 

1. Introduction



+

+

References : [B2] Ch.7, [H4] Ch.11, 12, [D2]

Ingredient of Haskell(GHC) ‘s lazy evaluation

at most once
substitute pointers

update redex root with result

WHNF

evaluate

an expression

a value

only when needed normal order reduction

only enough stop at WHNF

This strategy is implemented by lazy graph reduction.

1. Introduction



References : [B2] Ch.7, [H4] Ch.2, 11, 12, 15, [H5], [D2]

Techniques of Haskell(GHC) ‘s lazy evaluation
evaluate

only when needed

evaluate

at most once

evaluate

only enough

self-updating modellazy constructor

normal order reduction
(leftmost outermost reduction)

call-by-need

substitute pointers

full laziness

stop at WHNF

pattern-matching

lazy graph reduction

thunk

update redex root with result

1. Introduction



Simple questions
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References : [H4] Ch.2, 11, [B6] Ch.5

What order?

An expression  is evaluated by normal order (leftmost outermost redex first).

exp0 exp1 exp2 expn
...

an expression

To avoid unnecessary computation, normal order reduction chooses to apply the function 

rather than first evaluating the argument.

Normal order reduction guarantees to find a normal form (if one exists).

1. Introduction



How to postpone?

To postpone the evaluation, an unevaluated expression is built in the heap memory.

exp0 (exp1 exp2 exp3 )

heap memory

exp1 exp2 exp3

Haskell code

an unevaluated expression

build/allocate

References : [H4], [H5]

1. Introduction
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When needed?

Pattern-matching or forcing request drive the evaluation.

heap memory

exp1 exp2 exp3

pattern-matching

an unevaluated expression

evaluation request

case  x of

Just   _ -> True

Nothing -> False

seq x  y

f  $! arg

forcing request

x  + y

built-in (primitive operation)

References : [H4], [D2], [D5]

1. Introduction
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References : [H4], [D2], [D5]

What to be careful about?

You can avoid the pitfalls by controlling the evaluation.

To consider hidden space leak

To consider performance cost to postpone unevaluated expressions

To consider evaluation (execution) order and timing in real world

heap
memory

heap
memory

build, force,

update, gc, ...

A

B

C

A

B

C

1. Introduction



2. Expressions



Expression and value

2. Expressions



References : [B1] Ch.1, [B2] Ch.2, [B6] Ch.3, [H4] Ch.2

What is an expression?

?

An expression

2. Expressions



References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2

An expression denotes a value

1 + 2

An expression

2. Expressions



References : [B1] Ch.1, [B2] Ch.2, [H1] Ch.1, [B6] Ch.3, [H4] Ch.2

An expression is evaluated to a value

evaluate

A value

1 + 2

An expression

3

2. Expressions



References : [B2] Ch.2, 7, [B6] Ch.3, [D1]

There are many evaluation approaches

( 1 + 2 ) ^ 2

An expression

A value

9

- Strict, Non-strict evaluation

- Eager, Lazy evaluation

- Call-by-value, Call-by-name,

Call-by-need, …

- Innermost, Outermost

- Normal order, Applicative order

- …

evaluation strategies

2. Expressions



References : [D3], [B2] Ch.2, 7, [B6] Ch.3, [D1]

There are some evaluation levels

WHNF

take 3 [1..]

An expression

A value

[ 1, 2, 3 ]

NF

(Weak Head Normal Form)

(Normal Form)

2. Expressions



Expressions in Haskell

2. Expressions



References : [B2] Ch.2, [H1] Ch.3

There are many expressions in Haskell

if b then 1 else 0

Expressions

categorizing

x : xs

case x of _ -> 0 

do {x <- get; put x}

﹨x -> x + 1

let x = 1 in x + y

fun  arg

(﹨x -> x + 1) 3

7

‘a’

take 5 xs

Just 5
1 + 2

[1, 2, 3]

map f xs

(1, 2)

xs

2. Expressions



References : [H1] Ch.3, [B2] Ch.2

Expression categories in Haskell

lambda abstraction let expression

conditional case expression do expression

variable

﹨x -> x + 1 let x = 1 in x + y

if b then 1 else 0 case x of _ -> 0 do {x <- get; put x}

general constructor, literal and some forms

7

‘a’

[1, 2, 3] (1, 2)

x : xs Just 5

function application

take 5 xs

map f xs
fun  arg

(﹨x -> x + 1) 3 1 + 2

xs

2. Expressions



References : [H1] Ch.3, [B2] Ch.2

Specification is described in Haskell 2010 Language Report

“Haskell 2010 Language Report, Chapter 3 Expressions” [H1]

2. Expressions



Classification by values and forms

2. Expressions



References : [H5]

Classification by values

data values

Expressions

function values

values

unevaluated expressions

Values are data values or function values.

7

﹨x -> x + 1

Just 5

‘a’

[1, 2, 3] (1, 2)

let x = 1 in x + y

if b then 1 else 0 case x of _ -> 0 do {x <- get; put x}

take 5 xs

map f xs fun  arg

(﹨x -> x + 1) 3
1 + 2

Just (f x)

bottom

⊥

2. Expressions



References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]

Classification by forms

Expressions

Values are WHNF, HNF or NF.

WHNF

HNF ﹨x -> abs 1

unevaluated expressions

let x = 1 in x + y

if b then 1 else 0 case x of _ -> 0 do {x <- get; put x}

take 5 xs

map f xs fun  arg

(﹨x -> x + 1) 3
1 + 2

values

bottom

⊥

NF

Just 5

‘a’

[1, 2, 3] (1, 2)

Just (f x)

7

﹨x -> x

﹨x -> x + (abs 1)[f x, g y]

2. Expressions



WHNF

2. Expressions



References : [H4] Ch.11, [D3], [B6] Ch.3, [B2] Ch.2, 7, [D1], [W1]

WHNF is one of the form in the evaluated values

WHNF

exp

An expression

A value

NF

NF

(Weak Head Normal Form)

(Normal Form)

(2) normal order reduction

of inner level redexes

no redexes at all

no top-level redexes

(1) normal order reduction

of top- level (head) redexes

2. Expressions



References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

WHNF

exp0 exp1 exp2 expn
...

top-level (head) is

a constructor or

a lambda abstraction

no top-level redex

WHNF is a value which has evaluated top-level

2. Expressions



References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

WHNF for a data value and a function value

exp0 exp1 exp2 expn
...

constructor

a data value in WHNF
inner redexes

a function value in WHNF

﹨x1 .. xn -> exp

lambda abstraction

no top-level redex

inner redexes

no top-level redex

2. Expressions



References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

Examples of WHNF

Just (abs  x)

Cons (f  1) (map  f  [2..] )

WHNF

no WHNF

Just 7

﹨x -> x + 1

if x then elseTrue False

abs 7

no top-level redex

top level-redex

no top-level redex

no top-level redex

no top-level redex

top level-redex

2. Expressions



References : [H4] Ch.11, [D3], [B3]

HNF

exp0 exp1 exp2 expn
...

* GHC uses WHNF rather than HNF.

no top-level redex

top-level (head) is

a constructor or

a lambda abstraction with no top-level redex

HNF is a value which has evaluated top-level

2. Expressions



References : [H4] Ch.11, [D3], [B3]

HNF for a data value and a function value

exp0 exp1 exp2 expn
...

constructor

a data value in HNF
inner redexes

a function value in HNF

﹨x1 .. xn ->

lambda abstraction

(same as WHNF)

exp0 exp1 expn
...

no redex

no top-level redex

2. Expressions



References : [H4] Ch.11, [D3], [B3]

Examples of HNF

Just (abs  x)
HNF

no HNF

Just 7

abs 7

no top-level redex

top level-redex

no top-level redex

﹨x -> (abs  7)Just

no top-level redex

﹨x -> abs 7

top level-redex

2. Expressions



References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

NF

exp0 exp1 exp2 expn
...

no internal redex

top-level (head) is

a constructor or

a lambda abstraction

NF is a value which has no redex.

2. Expressions



References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

NF for a data value and a function value

exp0 exp1 exp2 expn
...

constructor

a data value in NF

a function value in NF

﹨x1 .. xn ->

lambda abstraction

exp0 exp1 expn
...

no internal redex

no internal redex

2. Expressions



References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

Examples of NF

Cons 1

NF

no NF

Just 7

﹨x -> x + 1

no internal redex

﹨x ->

Nil

no internal redex

no internal redex

Just (abs  7)

redex

(abs  7)Just

redex

2. Expressions



References : [H4] Ch.11, [D3], [B5] Ch.2, [B4] Ch.24, [B6] Ch.3, [B2] Ch.2, 7, [D5], [D1]

WHNF, HNF, NF

exp0 exp1 exp2 expn
...

exp0 exp1 exp2 expn
...

exp0 exp1 exp2 expn
...WHNF

HNF

NF

no top-level redex

no top-level redex

no internal redex

top-level (head) is

a constructor or

a lambda abstraction with no top-level redex

top-level (head) is

a constructor or

a lambda abstraction

2. Expressions



References : [H4] Ch.11

Definition of WHNF and HNF

“The implementation of functional programming languages” [H4]

2. Expressions



3. Internal representation of expressions



Constructor

3. Internal representation of expressions



Constructor

Constructor is one of the key elements

to understand WHNF and lazy evaluation in Haskell.

3. Internal representation of expressions



Constructor

exp0 exp1 exp2 expn
...

constructor

A constructor builds a structured data value.

a data value

+

data components  (n ≥ 0)
(data constructor)

A constructor distinguishes the data value in expressions.

3. Internal representation of expressions

References : [B2], [H1], [H4] Ch.2, 10, [B6] Ch.11



Constructors and data declaration

data  Maybe a = Nothing

| Just       a

constructor data component

Constructors are defined by data declaration.

3. Internal representation of expressions

References : [B2], [H1]



Just

References : [H11], [H10], [H5], [H6], [H7]

Internal representation of Constructors for data values

Nothing

Just   7

Haskell code GHC’s internal representation

Nothing

header

header payload

7

heap memory

3. Internal representation of expressions



References : [H11], [H10], [H5], [H6], [H7], [D15]

Constructors are represented uniformly

header
payload

...

in heap memory, stack or static memory

object type data components

constructor,

function,

thunk, ...

GHC’s internal representation 

A data value is represented with header(constructor) + payload(components).

3. Internal representation of expressions



References : [H11], [H10], [H5], [H6], [H7]

Representation of various constructors

data  Bool = False

| True

data  Maybe a = Nothing

| Just      a

data  Either a b = Left       a

| Right      b

Just

Nothing

a

False

True

Left

a

Right

b

Haskell code GHC’s internal representation

3. Internal representation of expressions



References : [H11], [H10], [H5], [H6], [H7]

Primitive data types are also represented with constructors

Haskell code

I# 0#

I# 1#

:

GHC’s internal representation

C# ‘a’#

C# ‘b’#

:

data  Int = I#      Int#

data  Char = C#     Char#

heap memory

1 :: Int

‘a’ :: Char

3. Internal representation of expressions

boxed integer unboxed integer



List is also represented with constructors

[ 1, 2, 3 ]

syntactic desugar

1 : ( 2 : ( 3 : [] ) )

(:) 1 ( (:) 2 ( (:) 3 [] ) )

List

prefix notation by section

Cons 1 ( Cons 2 ( Cons 3 Nil ) )

equivalent data constructor

constructor

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7]



List is also represented with constructors

[ 1, 2, 3 ]

syntactic desugar

1 : ( 2 : ( 3 : [] ) )

(:) 1 ( (:) 2 ( (:) 3 [] ) )

List

prefix notation by section

Cons 1 ( Cons 2 ( Cons 3 Nil ) )

equivalent data constructor

* pseudo code

type  declaration

data  List a = Nil

| Cons a    (List a)

data  List a = []

| : a    (List a)

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7]



References : [H11], [H10], [H5], [H6], [H7]

List is also represented with constructors

(:)

[]

Haskell code GHC’s internal representation

a List a

Cons

Nil

a List a

data  List a = Nil

| Cons a     (List a)

data  List a = []

| : a     (List a)

heap memory

* pseudo code

3. Internal representation of expressions

equivalent data constructor



References : [H11], [H10], [H5], [H6], [H7]

List is also represented with constructors

[ 1, 2, 3 ]

1 : ( 2 : ( 3 : [] ) )

(:) 1 ( (:) 2 ( (:) 3 [] ) )

Cons 1 ( Cons 2 ( Cons 3 Nil ) )

Haskell code

GHC’s internal representation

1

Cons (:)

2

Cons (:)

3

Cons (:)

Nil ([])

3. Internal representation of expressions



type  declaration

Tuple is also represented with constructor

( 7, 8 )

(,) 7 8

Tuple (Pair)

prefix notation by section

Pair 7  8

equivalent data constructor

data  Pair  a = (,) a      a

data  Pair  a = Pair a      a

* pseudo code

constructor

3. Internal representation of expressions

References : [H11], [H10], [H5], [H6], [H7]



References : [H11], [H10], [H5], [H6], [H7]

Tuple is also represented with constructor

(,)

Haskell code GHC’s internal representation

a a

Pair

a a

data  Pair  a = Pair a      a

data  Pair  a = (,) a      a

heap memory

3. Internal representation of expressions

equivalent data constructor



References : [H11], [H10], [H5], [H6], [H7]

Tuple is also represented with constructor

( 7, 8 )

(,) 7 8

Pair 7  8

7

Pair  (,)

8

Haskell code

GHC’s internal representation

3. Internal representation of expressions



Thunk

3. Internal representation of expressions



a thunk
(an unevaluated expression/

a suspended computation)

References : [B5] Ch.2, [D5], [W1], [H10], [H5], [D7]

Thunk

A thunk is an unevaluated expression in heap memory.

A thunk is built to postpone the evaluation.

Haskell code GHC’s internal representation

an unevaluated expression

heap memory

3. Internal representation of expressions



References : [H11], [H10], [D2], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]

Internal representation of a thunk

An unevaluated expression
header

payload

y ys

thunk

info ptr

take  y  ys

code free variables

A thunk is represented with header(code) + payload(free variables).

Haskell code GHC’s internal representation

take  y  ys

3. Internal representation of expressions



thunk

References : [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1]

A thunk is a package

info ptr

header
payload

y ys
take  y  ys

code free variables

A thunk is a package of code + free variables.

3. Internal representation of expressions



References : [D7], [D2], [H11], [H10], [H5], [H6], [H7], [B5] Ch.2, [D5], [W1], [D15]

A thunk is evaluated by forcing request

Haskell code GHC’s internal representation

An unevaluated expression
header

payload

y ys

thunk

info ptr

take  y  ys

code free variables

take  y  ys

[ 3 ]

An evaluated expression

evaluate
by forcing request

Cons (:)

3 Nil ([])

evaluate
by forcing request

3. Internal representation of expressions



Uniform representation

3. Internal representation of expressions



References : [H11], [H10], [H5], [H6], [H7], [D15]

Every object is uniformly represented in memory

header
payload

...

in heap memory, stack or static memory

object type data components

constructor,

function,

thunk, ...

3. Internal representation of expressions



References : [H11], [H10], [H5], [H6], [H7], [D15]

Every object is uniformly represented in memory

a thunka data value a function value

header payload

...

3. Internal representation of expressions



References : [H11], [H10], [H5], [H6], [H7], [D15]

Every object is uniformly represented in memory

header payload

...

code
free variables

info ptrinfo ptrinfo ptr

a thunka data value a function value

code
free variables

stack or

registers

arguments

data components
constructor

3. Internal representation of expressions

* At exactly, a thunk object has 

a reserved field in second.



WHNF

3. Internal representation of expressions



References : [H11], [H5], [H6], [H7], [H10]

Internal representation of WHNF

exp0 exp1 expn
...

constructor

a data value in WHNF

a function value in WHNF

﹨x1 .. xn -> exp

lambda abstraction

info ptr

constructor

data component(s)

heap memory

info ptr

code

(exp) free variables

info ptr

...

info ptr

data component(s)

exp1

exp2

Haskell code GHC’s internal representation

3. Internal representation of expressions



References : [H11], [H5], [H6], [H7], [H10]

Example of WHNF for a data value

Just (take x [1..])

constructor

Just

constructor

a redex

an unevaluated  expression

Haskell code GHC’s internal representation

info ptr

take x [1..]
x

thunk

free variables

Constructors can contain unevaluated expressions by thunks.

Haskell’s constructors are lazy constructors.

3. Internal representation of expressions



References : [H11], [H5], [H6], [H7], [H10]

Example of WHNF for a data value

Cons (map f xs)

constructor

Cons

constructor

Haskell code GHC’s internal representation

info ptr

map f xs
f

thunk

free variables

Nil

[ map f xs ]

syntactic desugar

xs

Nil
a redex

an unevaluated  expression

3. Internal representation of expressions



let, case expression

3. Internal representation of expressions



let, case expression

let and case expressions are special role in the evaluation

3. Internal representation of expressions



References : [H5], [H6], [H7], [H10]

let/case expressions and thunk

thunk
(unevaluated expression/

suspended computation)

let expression case expression
(allocate)

build

force

(evaluate)

extract

(deconstruct)

A let expression may build a thunk.

A case expression evaluates (forces) and deconstructs the thunk.

3. Internal representation of expressions



References : [H5], [H6], [H7], [H10]

A let expression may allocates a heap object

let  x =  .....
(build)

allocate

heap memory

let expression

a thunk

(an unevaluated expression)

a function value

a data value

or

or

* At exactly, STG language’s let expression rather than Haskell’s let expression

A let expression may allocates an object in the heap.
(If GHC can optimize it, the let expression may not allocate.)

3. Internal representation of expressions
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Example of let expressions

let  x =  Just 5

(build)

allocate

let  x =  ﹨y  -> y + z

let  x =  take  y  ys

Just

5

info ptr

﹨y  -> y + z
free variables

z

info ptr

take y ys
free variables

y

allocate

allocate

Haskell code GHC’s internal representation

ys

a data value

a function value

a thunk

3. Internal representation of expressions
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A case expression evaluates a subexpression

case  x   of

pattern1   -> alt1

pattern2  -> alt2

heap memory

case expression
a data value or

a function value or

a thunk

* At exactly, STG language’s case expression rather than Haskell’s case expression

Pattern-matching drives the evaluation.

x

x

(1) pattern-matching drives

the evaluation

an evaluated value

(a data value or

a function value)

3. Internal representation of expressions

evaluate
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A case expression also perform case analysis

case  x   of

pattern1   -> alt1

pattern2  -> alt2

heap memory

case expression
a data value or

a function value or

a thunk

* At exactly, STG language’s case expression rather than Haskell’s case expression

A case expression evaluates a subexpression

and optionally performs case analysis on its value.

x

x

(1) pattern-matching drives

the evaluation

(2) select alternative 

expression 

with result value

an evaluated value

(a data value or

a function value)

3. Internal representation of expressions

evaluate
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Example of a case expression

case  x   of

Just  _    -> True

Nothing   -> False

(1) pattern-matching drives

the evaluation

heap memory

case expression

evaluate

(2) select alternative 

expression 

with result value

x

x

info ptr

f  xs
free variables

f xs

a thunk

Just

5

A case expression’s pattern-matching says “I need the value”.

3. Internal representation of expressions
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Pattern-matching in function definition

f   Just  _    =  True

f   Nothing   =  False

pattern-matching in function definition

f x = case x   of

Just  _    -> True

Nothing   -> False

pattern-matching in case expression

syntactic desugar

A function’s pattern-matching also drives the evaluation.

A function’s pattern-matching is syntactic sugar of case expression.

3. Internal representation of expressions



4. Evaluation



Evaluation strategies

4. Evaluation
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Evaluation

evaluate

A value

1 + 2

An expression

3

4. Evaluation

The evaluation produces a value from an expression.
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There are many evaluation approaches

[ 1 + 2 ]

An expression

A value

[ 3 ]

- Strict, Non-strict evaluation

- Eager, Lazy evaluation

- Call-by-value, Call-by-name,

Call-by-need, …

- Innermost, Outermost

- Normal order, Application order

- …

evaluation strategies

4. Evaluation



Evaluation concept layer

Implementation techniques

Operational semantics

(Evaluation strategies / Reduction strategies)

Denotational semantics 

4. Evaluation
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Evaluation layer for GHC’s Haskell

Implementation

techniques

Strict semantics Non-strict semantics

Strict evaluation Non-strict evaluation

Lazy graph reduction

Call-by-Value Call-by-Name Call-by-Need

...

...

...

Denotational

semantics

(Evaluation strategies/

Reduction strategies)

Operational

semantics

Applicative order reduction Normal order reduction

Tree reduction

...

Eager evaluation Lazy evaluation
Nondeterministic

evaluation

Innermost reduction Outermost reductionRightmost reduction Leftmost reduction

4. Evaluation
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Evaluation layer for GHC’s Haskell

Implementation

techniques

Strict semantics Non-strict semantics

Strict evaluation Non-strict evaluation

Lazy graph reduction

Call-by-Value Call-by-Name Call-by-Need

...

...

...

Denotational

semantics

(Evaluation strategies/

Reduction strategies)

Operational

semantics

Applicative order reduction Normal order reduction

Tree reduction

...

Eager evaluation Lazy evaluation
Nondeterministic

evaluation

Innermost reduction Outermost reductionRightmost reduction Leftmost reduction

4. Evaluation
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Evaluation strategies

Each evaluation strategy decides how to operate the evaluation, about ...

ordering,

region,

trigger condition,

termination condition,

re-evaluation, ...

4. Evaluation
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One of the important points is the order

function    arguments

which first?

eager evaluation,

call-by-value,

innermost reduction,

applicative order reduction

lazy evaluation,

call-by-name,

call-by-need,

outermost reduction,

normal order reduction

apply first argument first

4. Evaluation

apply
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Simple example of typical evaluations

call-by-value call-by-need

square ( 1 + 2 ) square ( 1 + 2 )

argument

evaluation

first

apply

first

4. Evaluation
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Simple example of typical evaluations

call-by-value call-by-need

square ( 1 + 2 ) square ( 1 + 2 )

square ( 3 ) ( 1 + 2 ) * ( 1 + 2 )

3 * 3 ( 3 ) * ( 3 )

9 9

evaluation is

delayed !

evaluation is

performed

4. Evaluation



Evaluation in Haskell (GHC)

4. Evaluation
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Key concepts of GHC’s lazy evaluation

WHNF

An expression

A value

NF

fun   args

postpone the evaluation of arguments

to evaluate only when needed

evaluate

stop at WHNF

to evaluate only enough

update itself

to evaluate at most once

drive the evaluation

by pattern-matching

4. Evaluation

reduce in normal order and
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Postpone the evaluation of arguments

postpone the evaluation by a thunk which build with let expression

heap memory

Haskell code

postpone

info ptr

map  g1  ys 
free variables

g1 ys

a thunk

fun   (map  g1  ys)

let  thunk0 =   map  g1  ys

in  fun  thunk0

internal translation

(build)

4. Evaluation

(When GHC can optimize it by analysis, the thunk may not be build.)
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Pattern-matching drives the evaluation

case  x   of

pattern1   -> alt1

pattern2  -> alt2

heap memory

case expression a thunk
x

pattern-matching drives

the evaluation

4. Evaluation

evaluate

drive the evaluation by pattern-matching
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Stop at WHNF
4. Evaluation

WHNF

an unevaluated expression

evaluate

heap memory

info ptr

code free variables

a thunk

a value (WHNF)

evaluate

exp exp exp... ...

evaluated

info ptr

evaluated

Haskell code GHC’s internal representation

stop the evaluation at WHNF



Examples of evaluation steps

4. Evaluation



(1) Example of GHC’s evaluation

tail  (map  abs  [1, -2, 3])

Let’s evaluate.   It’s time to magic!

4. Evaluation

* no optimizing case (without –O)



(2) How to postpone the evaluation of arguments?

tail  (map  abs  [1, -2, 3])

function

argument

4. Evaluation



(3) GHC internally translates the expression

tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

4. Evaluation



(4) a let expression builds a thunk

tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

thunk

map f xs abs [1,-2,3]

internal translation
heap memory

build

4. Evaluation



(5) function apply to argument

tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

apply

4. Evaluation



tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

(6) tail function is defined here

tail (_:xs) = xs

4. Evaluation

definition



tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

tail (_:xs) = xs

(7) function’s pattern is syntactic sugar

tail y = case y of

(_:xs) -> xs

syntactic

desugar

4. Evaluation



tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

tail (_:xs) = xs

tail y = case y of

(_:xs) -> xs

(8) substitute the function body (beta reduction)

case  thunk0  of 

(_:xs) -> xs

reduction

4. Evaluation



(9) case pattern-matching drives the evaluation

tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

tail (_:xs) = xs

tail y = case y of

(_:xs) -> xs

case  thunk0  of 

(_:xs) -> xs

evaluate

4. Evaluation

drive the evaluation

(forcing request)



tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

tail (_:xs) = xs

tail y = case y of

(_:xs) -> xs

case  thunk0  of 

(_:xs) -> xs

(10) but, stop at WHNF

1

constructor

Cons

abs x map f xs abs [-2,3]

thunkthunk

stop at

WHNF

evaluate

4. Evaluation

case  (abs 1) : (map abs [-2, 3])  of 

(_:xs) -> xs

evaluated



(11) bind variables to a result

tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

tail (_:xs) = xs

tail y = case y of

(_:xs) -> xs

case  thunk0  of 

(_:xs) -> xs

1

constructor

Cons

abs x map f xs abs [-2,3]

thunkthunk

evaluate

case  (abs 1) : (map abs [-2, 3])  of 

(_:xs) -> xs

4. Evaluation



(12) return the value

tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

tail (_:xs) = xs

tail y = case y of

(_:xs) -> xs

case  thunk0  of 

(_:xs) -> xs

1

constructor

Cons

abs x map f xs abs [-2,3]

thunkthunk

evaluate

case  (abs 1) : (map abs [-2, 3])  of 

(_:xs) -> xs

map  abs  [-2, 3]

a result value

4. Evaluation



Key points

tail  (map  abs  [1, -2, 3])

let  thunk0 =  map  abs  [1, -2, 3]

in  tail thunk0

internal translation

thunk

map f xs abs [1,-2,3]

heap memory

tail (_:xs) = xs

tail y = case y of

(_:xs) -> xs

case  thunk0  of 

(_:xs) -> xs

1

constructor

Cons

abs x map f xs abs [-2,3]

thunkthunk

evaluate

case  (abs 1) : (map abs [-2, 3])  of 

(_:xs) -> xs

map  abs  [-2, 3]

a result value

4. Evaluation



Examples of evaluations

4. Evaluation

* no optimizing case (without –O)
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Example of repeat

repeat  1

1  :  repeat 1

1  :  1  :  repeat 1

1  :  1  :  1  :  repeat 1

4. Evaluation
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Example of repeat

repeat  1

1  :  repeat 1

Cons  1  (repeat 1)

Cons

1
thunk

1repeat

1  :  1  :  repeat 1

Cons  1  (Cons  1  (repeat 1) )

1  :  1  :  1  :  repeat 1

Cons  1  (Cons  1  (Cons  1  (repeat 1) )  )

Cons

1

Cons

1
thunk

1repeat

Cons

1

Cons

1
thunk

1repeat

Cons

1

1repeat

1repeat

4. Evaluation
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Example of map

map  f  [1, 2, 3]

f 1  :  map f [2, 3]

f 1  :  f 2  :  map f [3]

f 1  :  f 2  :  f 3

...

4. Evaluation
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Example of map

map  f  [1, 2, 3]

f 1  :  map f [2, 3]

f 1  :  f 2  :  map f [3]

f 1  :  f 2  :  f 3

Cons  (f 1)  (map f [2, 3])

Cons  (f 1)  (Cons (f 2)  (map f [3]) )

Cons (f 1)  (Cons (f 2)  (Cons (f 3)  Nil ) )

Cons Cons Cons Nil

f

1

f

2

f

3

Cons Cons

f

1

f

2

Cons

f

1

......

thunk

map f [2,3]

thunk

map f [3]

4. Evaluation
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Example of foldl (non-strict)

foldl (+) (0 + 1) [2 .. 100]

foldl  (+)  ((0 + 1) + 2)  [3 .. 100]

foldl  (+)  (((0 + 1) + 2) + 3)  [4 .. 100]

foldl (+)  0  [1 .. 100]

...

4. Evaluation
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Example of foldl (non-strict)

(+)

0 1

(+)

2

(+)

3

thunk1 thunk2 thunk3

(+)

0 1

(+)

2

thunk1 thunk2

(+)

0 1

thunk1foldl (+) (0 + 1) [2 .. 100]

foldl  (+)  ((0 + 1) + 2)  [3 .. 100]

foldl  (+)  (((0 + 1) + 2) + 3)  [4 .. 100]

let  thunk1 = (0 + 1)

in foldl (+) thunk1 [2 .. 100]

let  thunk2 = (thunk1 + 2)

in foldl (+) thunk2 [3 .. 100]

let  thunk3 = (thunk2 + 3)

in foldl (+) thunk3 [4 .. 100]

foldl (+)  0  [1 .. 100]

heap memory

...

*show only accumulation value

4. Evaluation
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Example of foldl’ (strict)

foldl’ (+)  0  [1 .. 100]

foldl’ (+) (0 + 1) [2 .. 100]

foldl’ (+) (1 + 2) [3 .. 100]

foldl’ (+) (3 + 3) [4 .. 100]

...

4. Evaluation
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Example of foldl’ (strict)

foldl’ (+)  0  [1 .. 100]

let  thunk1 = (0 + 1)

in  thunk1  `seq`

foldl’ (+) thunk1 [2 .. 100]

foldl’ (+) (0 + 1) [2 .. 100]

let  thunk2 = (1 + 2)

in  thunk2  `seq`

foldl’ (+) thunk2 [3 .. 100]

foldl’ (+) (1 + 2) [3 .. 100]

let  thunk3 = (3 + 3)

in  thunk3  `seq`

foldl’ (+) thunk3 [4 .. 100]

foldl’ (+) (3 + 3) [4 .. 100]

(+)

0 1

heap memory

thunk1

I# 1#

(+)

2

thunk2

I# 3#

I# 1#

eval

by seq

(+)

3

thunk3

I# 6#

I# 3#

...

4. Evaluation
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Example of foldl (non-strict) and foldl’ (strict)

foldl (+) (0 + 1) [2 .. 100]

foldl  (+)  ((0 + 1) + 2) [3 .. 100]

foldl  (+)  (((0 + 1) + 2) + 3) [4 .. 100]

foldl’ (+) (0 + 1) [2 .. 100]

foldl’ (+) (1 + 2) [3 .. 100]

foldl’ (+) (3 + 3) [4 .. 100]

4. Evaluation



(+)
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Example of foldl (non-strict) and foldl’ (strict)

0 1 2

(+)

3

heap memory

(+)

(+)

0 1 2

(+)

0 1

(+)

3

(+)

I# 3#

I# 6#

2

(+)

I# 1#

1

(+)

0

I# 3#

I# 1#

foldl (+) (0 + 1) [2 .. 100]

foldl  (+)  ((0 + 1) + 2) [3 .. 100]

foldl  (+)  (((0 + 1) + 2) + 3) [4 .. 100]

foldl’ (+) (0 + 1) [2 .. 100]

foldl’ (+) (1 + 2) [3 .. 100]

foldl’ (+) (3 + 3) [4 .. 100]

4. Evaluation



Controlling the evaluation

4. Evaluation



How to drive the evaluation

An expression

driving the evaluation by

and deconstructing by

pattern-

matching

primitive 

operation

forcing

function

special

syntax

special

pragma

case expression

function definition

+, *, ... seq

$!

pseq

deepseq

force

$!!

rnf

,...

! Strict

StrictData

* ghc 8.0 ~

compile

option

-O

-fstrictness

-XStrict

-XStrictData
* ghc 8.0 ~

strict

function

foldl’

scanl’

,...

4. Evaluation
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(1) Evaluation by pattern-matching

case  ds   of

x:xs   -> f  x  xs

[]       -> False

pattern-matching in case expression

f   Just  _    =  True

f   Nothing   =  False

pattern-matching in function definition 

forcing

(drive the evaluation of the thunk)

forcing

(drive the evaluation of the thunk)

4. Evaluation
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(1) Evaluation by pattern-matching

Strict patterns drive the evaluation Lazy patterns postpone the evaluation.

function definition

let binding patterncase expression

irrefutable patterns

case  ds   of

x:xs   -> f  x  xs

[]       -> False

f   Just  _    =  True

f   Nothing   =  False

let  (x:xs)  =  fun  args

f   ~(Just  _ )   =  True

f   ~(Nothing)   =  False

There are two kinds of pattern-matching.

[H1] 3.17

4. Evaluation
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(2) Evaluation by primitive operation

f  x  y  =  x  + y

primitive (built-in) operation
forcing x and y

(drive the evaluation of the thunks)

+, *, ...

(+) (I# a) (I# b)  =  I#  (a+b)

pattern-matching

primitive operations are defined such as

4. Evaluation

* pseudo code
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(3) Evaluation by strict version function

foldl’ (+)  0  xs

strict version function
strict application of the operator

4. Evaluation

scanl’ (+)  0  xs

:
:



References : [B5] Ch.2, [B4] Ch.24, 25, [B6] Ch.7, [H1] Ch.6, [D2], [B2], [D1], [D2]. [S1], [S2]

(4) Evaluation by forcing function

seq x  y

forcing functions to WHNF
forcing

(drive the evaluation of the thunk)

forcing functions to NF

f $! x

pseq x  y

deepseq x  y

f $!! x

force x

rnf x

4. Evaluation
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(4) Evaluation by forcing function

WHNF

NF

an expression

WHNF

NF

an expression

evaluate
seq

$!

pseq

deepseq

force

$!!

rnf

to WHNF to NF

4. Evaluation

evaluate
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(4) Evaluation by forcing function

to WHNF to NF

force

rnf

deepseq

$!!

seq

$!

pseq

two arguments

function application

one argument

sequential order

basic operation

4. Evaluation
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(4) Evaluation by forcing function

to WHNF to NF

force

rnf

deepseq

$!!

seq

$!

pseq

two expressions

function application

one expression

sequential order

basic operation

deepseq a b = rnf a `seq` b

force x = x `deepseq` x

f $!! x = x `deepseq` f x

built-in

f $! x   = let !vx = x in f vx

pseq  x y = x `seq` lazy y
class NFData a where

rnf :: a -> ()

instance NFData Int where rnf !_ = ()
:

instance NFData a => NFData [a] where
rnf [] = ()
rnf (x:xs) = rnf x `seq` rnf xs

definition

4. Evaluation
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(4) Evaluation by forcing function

seq a  ()

deepseq a  ()

length a

a = map  abs  [1, -2, 3, -4]

Cons Cons Cons

1 2 3

thunk

1abs x

Cons Nil

Cons Cons Cons Cons Nil

4

thunk

-2abs x

thunk

3abs x

thunk

-4abs x

thunk

1abs x

Cons

absmap f xs [-2, 3, -4]

thunk

4. Evaluation

full evaluation

evaluate spine only 

evaluate head only
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(5) Evaluation by special syntax

{-# LANGUAGE BangPatterns #-}

f  !xs  =  g  xs

Bang pattern

data  Pair  =  Pair  !a  !b

[H2] 7.19

Strictness flag

Strictness annotation

[H1] 4.2.1

Strictness annotations assist strictness analysis.

4. Evaluation

arguments are evaluated

before function application

arguments are evaluated

before constructor application
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(6) Evaluation by special pragma

{-# LANGUAGE Strict #-}

let  f  xs  =  g  xs   in   f  ys

data  Pair  =  Pair  a  b

Strict pragma

{-# LANGUAGE StrictData #-}

data  Pair  =  Pair  a  b

Strict and StrictData pragmas are module level control.

These can use in ghc 8.0 or later.

* ghc 8.0 ~

4. Evaluation

Special pragma for strictness language extension 

StrictData pragma * ghc 8.0 ~

arguments are evaluated

before application
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(7) Evaluation by compile option

strictness analysis

$ ghc  -O

$ ghc  -fstrictness

$ ghc  -XStrict

$ ghc  -XStrictData

strictness language extension * ghc 8.0 ~

4. Evaluation

apply Strict pragma

apply StrictData pragma

Turn on strictness analysis.

Implied by “-O”.

Compile option

Turn on optimization.

Imply “-fstrictness”.



5. Implementation of evaluator



Lazy graph reduction

5. Implementation of evaluator



References : [D3], [D2], [D5], [W5], [H4] Ch.12, [B8] Ch.3

Tree

An expression can be represented in the form of Abstract Syntax Tree (AST).

AST is reduced using stack (sequential access memory).

5. Implementation of evaluator

exp

exp exp

expexp exp

expexp exp
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Graph

exp

exp exp

exp

An expression can be also represented in the form of Graph.

Graph can share subexpressions to evaluate at once.

So, graph is reduced using heap (random access memory) rather than stack.

5. Implementation of evaluator

exp

expexp exp

shared term

exp
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Graph can be reduced in some order

square (1+2)

5. Implementation of evaluator

square 1 + 2

+ 1 2

square (1+2)

square 3

+ 1 2

(1+2) * (1+2)

1 + 2

+ 1 2

3 *

top-level redex

inner level redex
which first ?

reduce top-level (outermost) firstreduce inner level first

for call-by-value for call-by-need

To select top-level redex first, the evaluation of arguments can be postponed.
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Normal order reduction is implemented by lazy graph reduction

exp

exp exp

exp expexp

Normal order (leftmost outermost) reduction is implemented by lazy graph reduction

to select top-level redex first.

5. Implementation of evaluator

exp exp

find top-level redex

and reduce it

exp exp exp exp...

an expression

Normal order (leftmost outermost) first

Given an application of a function, the outermost redex is the function application itself.

Normal order reduction Lazy graph reduction

implemented by



STG-machine

5. Implementation of evaluator
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Abstract machine

Graph
(expression)

STG-machine
Evaluator
(abstract machine)

GHC uses abstract machine to reduce the expression.

It’s called “STG-machine”.

5. Implementation of evaluator

evaluate

(reduce / execute)
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Concept layer

Haskell code take 5 [1..10]

:

Graph

(internal representation

of the expression)

Evaluator (reducer, executer)

(abstract machine)

STG Registers Stack Heap

R1, ...

STG-machine

5. Implementation of evaluator
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STG-machine

STG-machine is abstraction machine

which  is defined by operational semantics.

STG-machine efficiently performs lazy graph reduction.

STG Registers Stack Heap

R1, ...

STG-machine

Static

5. Implementation of evaluator
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STG-machine

STG Registers Stack Heap

R1, ...

STG-machine

mainly used for

nest continuation

argument passing

mainly used for

allocating objects

(thunks, datas,

functions)

Static

mainly used for

call/return convention

various control

mainly used for

code

static objects

5. Implementation of evaluator
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Example of mapping a code to a graph

main

print head  [1..]

head [1..]

main = print (head [1..])

5. Implementation of evaluator
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Example of mapping a code to a graph

main

print head  [1..]

head [1..]

main = print (head [1..])

5. Implementation of evaluator
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Example of mapping a code to a graph

code

code code

code code

main = print (head [1..])

main

print head  [1..]

head
[1..]

function

function thunk

function thunk

build

build

5. Implementation of evaluator
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Self-updating model

expression code free variables

info ptr

a thunk

update code

info ptr

a data value

data components
constructor

evaluate and update

(replace myself to result value)

5. Implementation of evaluator

GHC’s internal representationExpression
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Unreferenced expressions (objects) will be removed by GC
5. Implementation of evaluator

a thunk

code

an evaluated expression

unreferenced

objects

collected by GC(Garbage Collection)

evaluate and updateevaluate and update

GHC’s internal representationExpression

collected by GC(Garbage Collection)
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STG-machine associates directly ...

STG-machine associates directly lambda calculus and physical machine.

5. Implementation of evaluator

( λx . body ) arg

let x = arg

in  body

case arg of

x -> body

x

x

a thunk

an evaluated value

heap memory

lazy

(non-strict)

eager

(strict)

arg

built a thunk

evaluate the arg

bind with a lazy expression

bind with an evaluated expression

arg



The STG-machine is ...

The STG-machine is the marriage of Lambda calculus and Turing machine.

5. Implementation of evaluator

λ
λ
λ λ

λ
λ λ

STG-machine

Lambda calculus Turing machine
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STG-dump shows which expression is built as thunks
5. Implementation of evaluator

module Example where

fun  f1  n = take  1  (f1  n)

[Example.hs]

Example.fun

:: forall a_aME t_aMF. (t_aMF -> [a_aME]) -> t_aMF -> 

[a_aME]

[GblId,

Arity=2,

Caf=NoCafRefs,

Str=DmdType <L,1*C1(U)><L,U>,

Unf=OtherCon []] =

﹨r srt:SRT:[] [f1_sQT n_sQU]

let {

sat_sQV [Occ=Once, Dmd=<L,1*U>] :: [a_aMH]

[LclId, Str=DmdType] =

﹨s srt:SRT:[] [] f1_sQT n_sQU;

} in  GHC.List.take_unsafe_UInt 1 sat_sQV;

STG code dump

by “$ ghc  -O  -ddump-stg  Example.hs”

thunk

f1_sQT  n_sQU
f1_sQT n_sQU

heap memory

build/allocate

let expression in STG language



6. Semantics



Bottom

6. Semantics
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A well formed expression should have a value

evaluate

A value

1 + 2

An expression

3

6. Semantics



?

References : [B2] Ch.2, [H1] Ch.3, [W4], [H4] Ch.2, 22

What is a value in this case?

evaluate

A value ?

An expression

infinite loop or

partial function

a non-terminating expression

6. Semantics
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A value “bottom” is introduced

evaluate

A value

An expression

⊥

bottom

a non-terminating expression

6. Semantics

infinite loop or

partial function
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Bottom

A value

⊥

Bottom (⊥) is “an undefined value”.

Bottom (⊥) is “a non-terminating value”.

6. Semantics
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“undefined” function represents “bottom” in GHC

Haskell code GHC’s internal representation

undefined :: a ⊥

Expression

info ptr

code

6. Semantics

GHC.Err.undefined



Strict/Non-strict

6. Semantics



an expression

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22, [H15], [H16]

Strictness
6. Semantics

definitely evaluated?

Strictness is “evaluation demand” of the expression.



an expression

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22, [H15], [H16]

Strict and non-strict
6. Semantics

“Strict” means that

the expression is definitely evaluated.

“Non-strict” means that

the expression may or may not be evaluated.



an expression

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22, [H15], [H16]

Strict and non-strict
6. Semantics

“Strict” means that

the expression is definitely evaluated.

“Non-strict” means that

the expression may or may not be evaluated.

GHC implements non-strict semantics by lazy evaluation.
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GHC has the lattice of strictness
6. Semantics

an expression

WHNF or ⊥

NF

WHNF or ⊥

NF

an expression

NF or ⊥

an expressionan expression

a lazy demand

a head-strict demand

a hyperstrict demand

a structured strictness demand

StrictNon-strict

There are multiple levels in strict.
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Strictness of a function
6. Semantics

A function places “strictness demands” on each of its arguments.

function

argument 2

argument 1 evaluated ?

evaluated ?

Will arguments be definitely evaluated in the function?
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Strictness of a function is formally defined
6. Semantics

Strictness of a function can be defined with the association between input and output.

“given a non-terminating arguments, the function will terminate?”

⊥ f

function

input output
?

f ⊥ = ?

definition
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Definition of the strict function

⊥ f ⊥

Strict function

input output

Strict function’s output is bottom when input is bottom.

f ⊥ = ⊥

given a non-terminating arguments, strict function will not terminate.

6. Semantics

definition



Non-strict function’s output is not bottom when input is bottom.

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22

Definition of the non-strict function

⊥ f ≠ ⊥

Non-strict function

input output
an evaluated value or

an unevaluated expression

given a non-terminating arguments, non-strict function will terminate.

6. Semantics

f ⊥ ≠⊥

definition



⊥ f ⊥

Strict function

input output

Strict

⊥ f ≠ ⊥

an evaluated value or

an unevaluated expression

Non-strict function

input output

Non-strict

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22

Strict and Non-strict functions
6. Semantics



f

Strict function
Strict

evaluate

the argument

to WHNF passing

the evaluated

argument

an argument

no need to evaluate the argument

f

Non-strict function

Non-strict

build a thunk
passing

the thunk

an argument

evaluate the argument if needed

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22

Function application and strictness
6. Semantics

Postpone or Prepay

The front stage is also important.



f $!!  argf $! argStrict

(deepseq)(seq)

References : [B2] Ch.2, [W1], [W4], [H4] Ch.2, 22

Strict and normal form

to WHNF to NF

6. Semantics

Strict   ≠ Normal form

Example of function application

Non-strict f $ arg



Lifted and boxed types

6. Semantics



References : [W4], [B2], [H14]

Lifted types
6. Semantics

Lifted types include bottom as an element.

0 1

Lifted type

2 ...

lifted
⊥
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Lifted type’s declaration implicitly include bottom
6. Semantics

False True

0 1

Bool type

Int type

2 ...

data  Bool = False

| True

| ⊥

data  Int = I#    Int#

| ⊥

implicitly included

implicitly included

data declaration

⊥

⊥
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Lifted type are also implemented by uniform representation
6. Semantics

Nothing

I# 0#

Just

data  Maybe a = Nothing

| Just  a

| ⊥

data  Int = I#    Int#

| ⊥

data declaration GHC’s internal representation

⊥

⊥

x :: Maybe a

x :: Int

undefined

code

I# 1#

:

a

undefined

code
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Lifted and unlifted types
6. Semantics

0 1

Lifted types

2 ...

lifted
0# 1#

Unlifted types

2# ...

Lifted types include bottom. Unlifted types do not include bottom.

Int type Int# type

⊥

(Bool, Int, Char, Maybe, List, ...) (Int#, Char#, Addr#, Array#, ByteArray#, ...)

⊥
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Example of lifted and unlifted types
6. Semantics

Lifted types Unlifted types

data1

x :: Array#

Nothing

Just

⊥

x :: Just a

code

data2

data3

I# 0#

⊥

x :: Int

code

I# 1#

:

#7

x :: Int#

no bottom

no bottom

a
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Boxed and unboxed types
6. Semantics

value

value

Boxed

types

Unboxed

types

pointed

Boxed types are represented as a pointer.

Unboxed types are represented other than a pointer.

- no bottom (can’t be lifted)

- no thunk (can’t be postponed)

- no polymorphism (non-uniform size)

+ low cost memory size (no pointer)

+ high performance (no wrap/unwrap)
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Example of boxed and unboxed types
6. Semantics

I# 0#

x :: Int

I# 1#

:

#7

x :: Int#

no bottom

Boxed

types

Unboxed

types

data1

x :: Array#

data2

data3
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Lifted and boxed types
6. Semantics

Lifted types Unlifted types

Boxed

types

Unboxed

types

Int

Char

Float

Maybe

:

Array#

ByteArray#

:

Int#

Char#

Float#

:

no bottom

no bottom

no packed

unboxed can’t be lifted
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Example of lifted and boxed types
6. Semantics

Lifted types Unlifted types

Boxed

types

Unboxed

types

I# 0#

⊥

x :: Int

code

I# 1#

:

data1

x :: Array#

data2

data3

#7

x :: Int#

include bottom

pointed
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Types and kinds
6. Semantics

Lifted types Unlifted types

Boxed

types

Unboxed

types

Int

Char

Float

Maybe

:

Array#

ByteArray#

:

Int#

Char#

Float#

:

kind ‘*’ kind ‘#’

Identifier’s ‘#’ customarily means “primitive” rather than “unboxed” or “unlifted”.

Kind’s ‘#’ means “unlifted”.

Note:



Strictness analysis

6. Semantics
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Strictness analysis
6. Semantics

arguments evaluated ?

function

Strictness analysis analyzes whether a function is sure to evaluate its argument.

analyzed by strictness analyser



arguments evaluated ?

function

References : [H15], [H16], [H2], [H4] Ch.22, [H8], [W6], [W3],  [H13]

Strictness analysis in GHC
6. Semantics

a lazy demand

a head-strict demand

a hyperstrict demand

a structured strictness demand

a used demand

a head-used demand

unused (absence)

a structured used demand

Strictness demands Absence/usage demands

GHC’s demand analyser implements strictness analysis.

Demand analysis ( = Strictness analysis + Absence analysis + ... )

demand analyser
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Example of strictness analysis information in GHC
6. Semantics

module Example where

f1 :: Bool -> Int -> Maybe Int

f1  c  n = case c of

True  -> Just n

False -> Nothing

[Example.hs]

==================== Strictness signatures ====================

Example.f1: <S,1*U><L,U>

Strictness analysis dump

by “$ ghc  -O  -ddump-strsigs Example.hs”

L -- second argument is “Lazy”

S -- first argument is “head-Strict”

GHC shows strictness analysis information with “-ddump-strsigs” and “-ddump-stranal”.



References : [H4] Ch.22, [H8], [W6], [W3], [H15], [H17], [H13]

(1) Strictness analysis are used to avoid the thunk

If GHC knows that a function is strict, arguments is evaluated before application.

GHC finds strict functions by “strictness analysis (demand analysis)”.

heap memory

exp

non-strict function

thunk
build

non-strict function exp

apply

heap memory

exp

thunk
build

strict function exp

apply

strict function

6. Semantics

no build

no force

no update

no GC



non-strict

strict

References : [H8], [H4] Ch.22, [W6], [W3], [H15], [H17], [H13]

(1) Strictness analysis are used to avoid the thunk
6. Semantics

let x = arg

in  body

case arg of

x -> body

let-to-case transformation

heap memory

arg

thunkbuild

heap memory

arg

thunk

build

If GHC knows that a function is strict, GHC performs let-to-case transformation.
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(2) Strictness analysis are also used to optimize
6. Semantics

Strict function

evaluate

the argument

evaluated

argumentan argument

evaluate

the argument

evaluated

argumentan argument

f

evaluated (no thunk)

unlifted (no bottom)

if ⊥

if ≠ ⊥

⊥

or

a result

optimizing

f

f’

Strictness function can be optimized to assume no thunk, no bottom.

optimized version



References : [H4] Ch.22, [H8], [W6], [W3], [H15], [H17], [H13]

(2) Strictness analysis are also used to optimize
6. Semantics

Strict function

evaluate

the argument

evaluated

argumentan argument

evaluate

the argument

evaluated

argumentan argument

f

evaluated (no thunk)

unlifted (no bottom)

if ⊥

if ≠ ⊥

⊥

or

a result

optimizing

evaluate

the argument

evaluated

argumentan argument

wf  (worker)

evaluated (no thunk)

unlifted (no bottom)

unboxed (no packed)

if ⊥

if ≠ ⊥

⊥

or

a result
unpack pack

lightly inlinable

high efficiency

f

f’

optimizing

f  (wrapper)

Strictness function can be optimized to assume no thunk, no bottom, no packed.



Sequential order

6. Semantics
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“seq” doesn’t guarantee the evaluation order

specification

seq  a  b   =   ⊥,       if  a  = ⊥

=   b,        otherwise

6. Semantics

seq  ⊥ b    =   ⊥

seq  a   ⊥ =   ⊥ // b is strict

// a is strict

“seq” function only guarantee that it is strict in both arguments.

This semantics property makes no operational guarantee about order of evaluation.

strictness for each arguments
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“seq” and “pseq”

specification

seq a  b   =   ⊥,       if  a  = ⊥

=   b,        otherwise

seq  ⊥ b    =   ⊥

seq  a   ⊥ =   ⊥ // b is strict

6. Semantics

// a is strict

specification

pseq a  b   =   ⊥,       if  a  = ⊥

=   b,        otherwise

pseq  ⊥ b    =   ⊥

pseq  a   ⊥ =   ⊥ // b is strict

// a is strict

Both of denotational semantics are the same.

But “pseq” makes operational guarantee about order of evaluation.
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Evaluation order of “seq” and “pseq”

seq  a  b

pseq  a  b

time

evaluation of a

evaluation of b

start termination

start termination return from b

no guarantee

no guarantee guarantee

time

evaluation of a

evaluation of b

start termination

start termination return from b

guarantee

6. Semantics
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Implementation of “seq” and “pseq”

specification

seq a  b   =   ⊥,       if  a  = ⊥

=   b,        otherwise

Haskell’s built-in

6. Semantics

specification

pseq a  b   =   ⊥,       if  a  = ⊥

=   b,        otherwise

pseq  x y = x `seq` lazy y

GHC’s “lazy” function restrains

the strictness analysis.

“seq” is built-in function.

“pseq” is implemented by built-in functions (“seq” and “lazy”).
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